
Non-parametric Greedy Optimization of Parametric
Quantum Circuits

Koustubh Phalak
Computer Science & Engineering Dept.

Pennsylvania State University
State College, PA.
krp5448@psu.edu

Swaroop Ghosh
School of EECS

Pennsylvania State University
State College, PA
szg212@psu.edu

Abstract—The use of Quantum Neural Networks (QNN) that
are analogous to classical neural networks, has greatly increased
in the past decade owing to the growing interest in the field
of Quantum Machine Learning (QML). A QNN consists of
three major components: (i) data loading/encoding circuit, (ii)
Parametric Quantum Circuit (PQC), and (iii) measurement
operations. Under ideal circumstances the PQC of the QNN
trains well, however that may not be the case for training under
quantum hardware due to presence of different kinds of noise.
Deeper QNNs with high depths tend to degrade more in terms
of performance compared to shallower networks. This work
aims to reduce depth and gate count of PQCs by replacing
parametric gates with their approximate fixed non-parametric
representations. We propose a greedy algorithm to achieve this
such that the algorithm minimizes a distance metric based on
unitary transformation matrix of original parametric gate and
new set of non-parametric gates. From this greedy optimization
followed by a few epochs of re-training, we observe roughly
14% reduction in depth and 48% reduction in gate count at the
cost of 3.33% reduction in inferencing accuracy. Similar results
are observed for a different dataset as well with different PQC
structure.

Index Terms—PQC, greedy optimization, transformation ma-
trix

I. INTRODUCTION

Quantum Computing (QC) is a rapidly growing field that
constantly keeps on evolving due as a results of new and
significant findings from researchers in the domain. In just
a decade, the scope of quantum computing has shifted from
simulation [1], [2] all the way to quantum utility [3] that
ensures reliable quantum operations even under noise. This
has opened up path for many subfields in quantum computing
along with exsisting fields such as Quantum Machine Learning
(QML) [4], quantum chemistry [5], finance [6], healthcare [7],
and security [8]. For QML in particular, the growth has been
very fast due to concurrent advances in both classical machine
learning as well as quantum computing [9]. Quantum Neural
Networks (QNN), which are quantum analogous models of
classical neural networks have emerged as a promising class
of QML models. Typically, the QNN has three segments: (i)
the data loading stage for loading classical data, (ii) Parametric
Quantum Circuit (PQC) that consists of trainable rotation
gates along with entangling gates to train the QNN, and (iii)
measurement operations to measure quantum states classically

for optimization. Typically, QNNs use traditional classical
optimization techniques such as Adam, Stochastic Gradient
Descent (SGD), Alternating Direction Method of Multipliers
(ADMM), adaptive learning rate, etc. [10] to train and update
the rotation angles of the parametric gates.

PQCs generally contains a layered structure where multiple
layers of fixed set of rotation and entangling gates (also
referred to as ansatz) are used. This is analogous to classical
neural networks having multiple layers of neurons. As an
example, Pennylane library from Xanadu has basic entangler
layer and strongly entangling layer from [11], simplified 2-
design layer from [12], and continuous-variable (CV) QNN
layers from [13] pre-defined, which one can add repetitively
in their custom quantum circuit. The addition of such layers
in the PQC is said to make the overall QNN to be having
higher expressive power compared to classical neural networks
[14], [15]. This implies that QNNs have a strong potential to
demonstrate quantum advantage.

Under ideal, noiseless conditions a QNN trains well. Re-
alistically however, there are two cruicial challenges: (i)
Susceptibility to noise: modern Noisy Intermediate Scale
Quantum (NISQ) devices are plagued with plethora of noise
such as decoherence (unwanted interaction of the quantum
system with external environment), gate errors (erroneous gate
operation implementations), readout errors (inaccurate mea-
surement apparatus) and crosstalk errors (unwanted interation
of neighboring/coupled qubits). These erroneous sources of
noise degrade performance of QNNs. Furthermore, deeper
QNNs with more layers promises to learn better but often
face higher degradation compared to shallower networks due
to larger depth and gate count. (ii) Quantum hardware
constraints: Generally, a quantum computer does not contain
all quantum gates native to it, but rather a set of basis gates
that is typically a universal set. According to the Solovay-
Kitaev theorem [16], a universal set allows decomposition of
any non-native gate as an approximate sequence of native gates
present in the basis gate set. Additionally, not every qubit is
connected to every other qubit in the quantum hardware. There
is limited connectivity between qubits which is respresented by
coupling map of the quantum hardware. Due to such coupling
constraints, any multi-qubit operations between physically
disconnected qubits require SWAP gate operations to bring

20
24

 2
5t

h
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

Q
ua

lit
y

El
ec

tro
ni

c
D

es
ig

n
(I

SQ
ED

) |
 9

79
-8

-3
50

3-
09

27
-0

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

IS
Q

ED
60

70
6.

20
24

.1
05

28
69

6

Authorized licensed use limited to: Penn State University. Downloaded on February 27,2025 at 13:17:16 UTC from IEEE Xplore. Restrictions apply.

the quantum states between physically connected qubits. The
combined process of decomposition and SWAP insertion is
often referred to transpilation and is an important step for
logical-to-physical qubit mapping. The above hardware con-
straints i.e., limited native gate set and qubit connectivity result
in increased gate count and circuit depth when mapped to real
hardware degrading the fidelity of the computation.

In this work, we focus only on the decomposition problem
and propose a greedy algorithm-based optimization of PQCs
that is able to reduce post-decomposition depth and gate count.
We specifically optimize only parametric rotation gates in the
PQC by replacing them with fixed non-parametric gates that
potentially have lesser decomposition depth compared to the
original parametric gate. We greedily optimize a unitary trans-
formation matrix-based distance metric that minimizes the
distance between the transformation matrices of the original
gate and selected set of non-parametric gates. The original
parametric gate is then replaced with this set of non-parametric
gates in the original PQC, and this action is repetitively per-
formed for all the parametric gates. The optimized QNN may
reduce the inference performance compared to the original
QNN, so we re-train the new QNN for a few epochs to regain
the original performance. All the code corresponding this work
can be found in our GitHub repository1.

In the rest of the paper, Section II introduces general
background on quantum computing along with related works
on QNN compression methods and quantum circuit transfor-
mation techniques. Section III presents the proposed greedy
algorithm to perform non-parametric approximation of para-
metric rotation gates, and Section IV applies this algorithm on
pre-trained PQCs to reduce overall post-decomposition depth
and gate count. We also analyze inferencing on optimized PQC
after re-training. Finally, Section V provides general discussion
on the proposed greedy algorithm and Section VI concludes
the paper.

II. BACKGROUND AND RELATED WORKS

A. Quantum Computing

Analogous to bits used in classical computing, quantum
computing utilizes quantum bits (qubits in short) to store in-
formation in quantum Hilbert space. This information is often
represented in the form of quantum state. It is mathematically
denoted as |ψ⟩ =

[α
β

]
, where |α|2 is the probability of qubit

being measured to 0 and |β|2 is the probability of qubit being
measured to 1. There are two special states |0⟩ =

[
1
0

]
and

|1⟩ =
[
0
1

]
which are known as basis states. The quantum

state of a qubit can be changed with the help of quantum
mechanical phenomena such as superposition, entanglement
and interference. Quantum gates, which are unitary matrix
operations are used to bring about this change of quantum
state. These gates either work on single or multiple qubits.
An ordered set of such quantum gate operations is a quantum
circuit. All the gate operations of quantum circuit are followed

1GitHub repository link: https://github.com/KoustubhPhalak/
Greedy-PQC-Optimization

by measurement operation that causes wavefunction collapse
[17] and measures the quantum state into a binary classical
value. A special kind of quantum circuit is Parametric Quan-
tum Circuit (PQC), which consists of parametric rotation gates.
Typically, PQCs are trainable circuits which can be trained like
an ML model using classical optimization techniques, and are
an integral part of QNNs.

B. Noise in Quantum Hardware

Various kinds of noise can adversely affect the performance
of QNNs. Decoherence error occurs when a qubit or multiple
qubits interact with external environment which leads to loss
of energy from the qubits. Crosstalk error is similar to deco-
herence with the difference being that unwanted interaction
can happen between qubits that are coupled to each other.
Quantum gates are typically implemented using microwave
(superconducting qubits) or laser (trapped-ion qubits) pulses.
There can be errors in application of these pulses which can
lead to gate errors. Finally, there are different implemen-
tations of measurement operation such as photon detectors
(photonic qubits), flourescence intensity (trapped-ion qubits)
or resonator coupling (superconducting qubits). Once again,
imprecise measurements or inaccuracies in the apparatus can
lead to readout errors.

C. QNN Compression Techniques

QNN compression approaches imitate classical neural net-
work compression techniques for quantum circuits. [18] pro-
poses knowledge distillation [19] for PQCs which uses a
unitary transformation matrix-based approximate synthesis
of PQCs to reduce the overall depth and gate count of
the quantum circuit. The distinctions with our methodology
is as follows. Firstly, the approximate synthesis [18] still
yields parametric gates unlike our work which yields only
non-parametric gates and second, the authors use simulated
annealing to perform optimization whereas we use greedy
algorithm to obtain gate optimization. In another related work
[20], authors propose quantization and pruning techniques for
QNNs. Based on the native basis gate set of the quantum
hardware, the authors create lookup table of decomposition
length for different angles for each single-qubit parametric
gate. Based on the angle, if (i) the decomposition depth leads
to zero i.e. an identity gate (+I or -I), then the gate can be
pruned. (ii) depending on the quantized rotation angle, the
decomposition depth of the parametric gate can be reduced.
For example, in a basis set of {CX, ID,RZ, SX,X}, an RX
gate with angle θ can be decomposed as

RX(θ) = RZ

(
5π

2

)
· SX ·RZ(θ + π) · SX ·RZ

(π
2

)
For θ = 0 −→ RX(0) = I (pruned), θ = 3π

2
−→ RX

(
3π
2

)
=

RZ(−π) · SX · RZ(−π) (3 depth), θ = π
2

−→ RX
(
3π
2

)
= SX

(1 depth). Thus, quantizing to certain angles leads to compression
of gates in the QNN. The authors employ alternating direction
method of multipliers (ADMM) optimization method on the lookup
table to come up with the optimal decomposition on each quantized
parametric gate. However, this problem suffers from an exponential

Authorized licensed use limited to: Penn State University. Downloaded on February 27,2025 at 13:17:16 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Parametric Gate Transformation Algorithm
1: function PARAMGATETRANSFORM(qc original, N , k)
2: Initialize qc new with 1 qubit
3: Compute tm original of qc original
4: single qubit gates = [x, y, z, h, s, t, id,√

x, s†,
√
x
†
, t†]

5: final dist = 1000
6: prev = ‘null’ (stands for previously selected gate)
7: for i from 1 to N do
8: dist dict = {}
9: for each gate in single qubit gates do

10: dist dict[gate] =1000
11: end for
12: for each gate in single qubit gates do
13: if gate == prev then
14: Continue
15: end if
16: qc new.add(gate)
17: Compute tm new of qc new
18: dist dict[gate] = 1− Tr(tm new†·tm original)

dim(tm new)
19: qc new.delete(gate)
20: end for
21: sort(dist dict,by value)
22: top k gates = dist dict.keys()[: k]
23: best gate = random choice(top k gates)
24: if final dist > dist dict[best gate] then
25: prev = best gate
26: final dist = dist dict[best gate]
27: qc new.add(best gate)
28: else
29: Continue
30: end if
31: end for
32: return final dist, qc new
33: end function

search space and requires a reduction of the lookup table to reduce
the optimization time.

D. Quantum Circuit Transformation Techniques

Another similar problem that is being solved is quantum circuit
transformation, where the goal is to find a functionally equivalent
circuit of the original circuit for better performance on hardware.
There are two main approaches for quantum circuit transformation:
(i) rule-based transformation that uses a set of gate cancellation rules
on sub-circuits to perform circuit transformation. These are typically
incorporated in transpilers such as Qiskit [21], Quilc [22] and |tket⟩
[23]; (ii) search-based transformation that is more flexible and tries
to find a functionally equivalent quantum circuit within a search
space. Typically, reinforcement learning is used to aid for this method
[24]–[26] while some other methods also include usage of Monte-
Carlo tree search [27] and ZX-Calculus [28]. Recently, QuantumNAS
[29] was proposed, that trains a SuperCircuit which is then used
to optimize SubCircuits with respect to target qubit mapping of a
quantum hardware.

Algorithm 2 Optimization of Parametric Quantum Circuit
(PQC) using ParamGateTransform() function

1: function OPTIMIZEPQC(PQC, tolerance)
2: Initialize an empty quantum circuit qc new with the

same number of qubits as PQC
3: Parse the PQC and create a list gates list with gate

metadata
4: for each gate g in gates list do
5: if g is an RX/RY/RZ gate then
6: Create new single qubit circuit qc temp and

add g
7: dist, qc opt =

ParamGateTransform(qc temp, 20, 4)
8: if dist < tolerance then
9: qc new.add(qc opt)

10: else
11: qc new.add(qc temp)
12: end if
13: else if g is a CNOT gate then
14: qc new.add(CNOT)
15: end if
16: end for
17: return qc new
18: end function

III. PROPOSED GREEDY ALGORITHM

We propose a greedy optimization algorithm to individually op-
timize a parametric gate to an approximation of sequence of non-
parametric gates. For each step of the greedy algorithm, we minimize
a distance metric that depends on the unitary transformation matrices
of the original gate and the new approximation of non-parametric
gates. If U is the unitary transformation matrix representation of
the original parametric gate and V is the unitary transformation
matrix representation of the set of non-parametric gates, then the
distance metric [18] is defined as d = 1 − Tr(V †U)

dim(V)
, where Tr()

is the trace function and dim() is the number of dimensions of
a matrix. In an ideal scenario, V †U = IN where IN is N -
dimensional identity matrix. So, Tr(IN) = N = dim(V), leading
to d = 1 − 1 = 0. In other words, a lower distance will reduce the
gap between transformation matrix representations U and V . Note
that the size of the transformation matrix depends exponentially on
the number of qubits used (2n ∗ 2n for n qubits). However, as we
shall show, we bypass this exponential requirement by performing
the greedy algorithm only on individual single-qubit parametric gates,
which reduces the size of transformation matrices only to size 2 ∗ 2.

The proposed greedy approach is presented in Algorithm 1. We
represent the original gate as a single qubit circuit qc original
with transformation matrix tm original, and new approximation
in another single qubit circuit qc new with overall transformation
matrix tm new. We select the following list of single qubit non-
parametric gates (shown in single qubit gates list) to create our
approximations: x, y, z, h, s, t, id,

√
x, s†,

√
x
†, and t†. For N

iterations, we use brute-force method for all the specified single-
qubit non-parametric gates by (i) adding the gate to qc new, (ii)
computing subsequent tm new, (iii) computing the distance between
tm original and tm new, and finally (iv) removing the non-
parametric gate from qc new. The distance associated with each
parametric gate is stored in a dictionary dist dict, which at the
end is sorted based on distance values in ascending order, and one
gate is randomly selected among top k choices. This selected gate

Authorized licensed use limited to: Penn State University. Downloaded on February 27,2025 at 13:17:16 UTC from IEEE Xplore. Restrictions apply.

RX RX RX RX RX RX RX RX

I

𝜽𝜽 = 0.574

𝒅𝒅 = 0.04

𝜽𝜽 = 1.39

X

𝒅𝒅 = 0.004

𝜽𝜽 = 2.16

𝒅𝒅 = 0.04

X

𝜽𝜽 = 3

X

𝒅𝒅 = 0.002

𝜽𝜽 = 3.65

X

𝒅𝒅 = 0.03

𝜽𝜽 = 4.33

X
†

𝒅𝒅 = 0.018

X
†

𝜽𝜽 = 5.39

𝒅𝒅 = 0.05

𝜽𝜽 = 6.18

I

𝒅𝒅 = 0.001

(0, 𝝅𝝅
𝟒𝟒

) (𝝅𝝅
𝟒𝟒

, 𝝅𝝅
𝟐𝟐
) (𝝅𝝅

𝟐𝟐
, 𝟑𝟑𝝅𝝅
𝟒𝟒

) (𝟑𝟑𝝅𝝅
𝟒𝟒

,𝝅𝝅) (𝝅𝝅, 𝟓𝟓𝝅𝝅
𝟒𝟒

) (𝟓𝟓𝝅𝝅
𝟒𝟒

, 𝟑𝟑𝝅𝝅
𝟐𝟐

) (𝟑𝟑𝝅𝝅
𝟐𝟐

, 𝟕𝟕𝝅𝝅
𝟒𝟒

) (𝟕𝟕𝝅𝝅
𝟒𝟒

,𝟐𝟐𝝅𝝅)

Fig. 1. RX gate approximations for different angle values

RX RX RX RX RX RX RX RX

I

𝜽𝜽 = 0.574

𝒅𝒅 = 0.04

𝜽𝜽 = 1.39

X

𝒅𝒅 = 0.004

𝜽𝜽 = 2.16

𝒅𝒅 = 0.04

X

𝜽𝜽 = 3

X

𝒅𝒅 = 0.002

𝜽𝜽 = 3.65

X

𝒅𝒅 = 0.03

𝜽𝜽 = 4.33

X
†

𝒅𝒅 = 0.018

X
†

𝜽𝜽 = 5.39

𝒅𝒅 = 0.05

𝜽𝜽 = 6.18

I

𝒅𝒅 = 0.001

(0, 𝝅𝝅
𝟒𝟒

) (𝝅𝝅
𝟒𝟒

, 𝝅𝝅
𝟐𝟐
) (𝝅𝝅

𝟐𝟐
, 𝟑𝟑𝝅𝝅
𝟒𝟒

) (𝟑𝟑𝝅𝝅
𝟒𝟒

,𝝅𝝅) (𝝅𝝅, 𝟓𝟓𝝅𝝅
𝟒𝟒

) (𝟓𝟓𝝅𝝅
𝟒𝟒

, 𝟑𝟑𝝅𝝅
𝟐𝟐

) (𝟑𝟑𝝅𝝅
𝟐𝟐

, 𝟕𝟕𝝅𝝅
𝟒𝟒

) (𝟕𝟕𝝅𝝅
𝟒𝟒

,𝟐𝟐𝝅𝝅)

RX(0.47)

RX(-0.76)

RX(0.01)

RX(0.68)

RX(0.86)

RX(0.35)

RX(0.72)

RX(-0.56)

I

RX(-0.76)

RX(0.68)

RX(0.86)

RX(0.72)

I

I

I

a b

Fig. 2. (a) First basic entangler layer of PQC trained on iris dataset, (b) same
layer after performing optimization shown in Algorithm 2

is the best gate. Finally, an overall distance check is done between
the overall circuit distance final dist and the best gate distance
dist dict[best gate]. If the distance provided by the addition of
best gate is lower compared to final dist only then will best gate
be added to qc new, otherwise it will not be added. Furthermore,
prev, which stores the previously added gate will be updated to
best gate in the scenario that gate is added.

Note that (i) we do not use prev gate in the subsequent iteration
for distance calculation to avoid having same gates that cancel out
to give identity operation (x.x = y.y = z.z = h.h = id) and (ii) we
use random choice among k least distance gates in order to avoid sce-
narios where alternately always the same gate is selected that always
cancel out to give identity operation (s.s†.s.s†... = t.t†.t.t†... = id).
For our work, we find out by trial and error that N = 20 and k = 4
are the optimal parameter choices for our greedy algorithm. As an
example, we show in Fig. 1 how the RX gate is approximated for
different angle values ranging from 0 to 2π in intervals of π

4
.

IV. APPLICATION ON TRAINED PQCS

We apply the proposed greedy algorithm on two trained PQCs.
The first is an 8-qubit PQC that is trained on classifying UCI Iris
dataset [30] and second is a 10-qubit PQC trained on classifying
UCI Digits dataset [31] (only 0 and 1 digits). For both the PQCs,
we use five basic entangler layers [11] (example is shown in Fig.
2(a)), that consists of a rotation gate on each qubit (in this case RX
gate) followed by CNOT gates connected in a circular fashion. For
each dataset, we use Adam optimizer, learning rate of 10−3, and 50
epochs for training. Later, for additional analysis we also perform
optimization on PQCs containing strongly entangling layers as well.

Basic entangler layer-based PQC: A summary of the PQC
optimization algorithm is shown in Algorithm 2. In order to optimize
a PQC, we perform following steps: (i) we create an empty circuit
with same number of qubits as the original PQC, (ii) we parse the
PQC and create a list of gates containing important metadata (qubits
operating on, rotation angle, etc.), (iii) we go through the parsed list
of gates one by one and then if we encounter an RX gate we perform

TABLE I
TOLERANCE SWEEP RESULTS.

Basic Entangler Layer-based PQC
Tolerance
value Depth Gate count Accuracy

Iris (66 depth, 240 gate count, 90% acc)
0.1 48 77 33.33
0.01 59 206 86.67
0.001 65 224 90

Digits (76 depth, 300 gate count, 90.2% acc)
0.1 58 116 65.27
0.01 64 193 88.88
0.001 73 228 90.2

greedy optimization. We set a tolerance value for the distance metric,
and if the distance obtained is lower than the tolerance value the
original RX gate is replaced with the non-parametric approximation
and added to the empty circuit, else the original RX gate will be
added, and (iv) if we encounter a CNOT gate it is added as is without
making any changes.

An example of the PQC optimization algorithm is shown in Fig. 2,
which shows first basic entangler layer of PQC that was trained for
classiying iris dataset. Fig. 2(a) shows the layer prior to performing
the greedy optimization and Fig. 2(b) shows the same layer after
performing the optimization. We can observe that some RX gates
that have rotation angle in the range (0, π

4
) have been replaced with

identity gate. This observation is in line with our expectations as we
can see from Fig. 1. For this particular example, we have set the
distance tolerance value to 0.05. In general, we sweep the tolerance
value (to 0.1, 0.01, and 0.001) and perform inferencing on each
optimized circuit to obtain testing accuracy. The results of this sweep
are tabulated in Table I. From the results, we observe that (i) lower
tolerance values are more accurate but perform less optimization, (ii)
higher tolerance values perform high optimization but suffer from
severe performance degradation. We particularly format 0.1 value
parameters in bold to denote that it gives low inferencing accuracy but
does not have any RX rotation gates left to further re-train the circuit
for improvement. We also format 0.01 value parameters in italics to
show good amount of circuit optimization for minimal performance
degradation, which can be improved since it has RX gates left for
training.

This implies that the optimal tolerance value lies between 0.01
and 0.1. From trial and error, we find out that for bare minimum
number of RX gates needed for good re-training performance iris
PQC can accomodate a maximum tolerance value of 0.05 while digits
PQC can accomodate a maximum tolerance value of 0.06. Once these
tolerance values are selected, we re-train these PQCs for roughly
30-40% of original number of epochs i.e. 15-20 extra epochs. The
re-trained parameter values have been tabulated in Table II. From
this table we note that the optimized circuit without re-training leads
to significant performance degradation, which is minimized after re-
training. For iris dataset, we don’t quite reach the original testing

Authorized licensed use limited to: Penn State University. Downloaded on February 27,2025 at 13:17:16 UTC from IEEE Xplore. Restrictions apply.

TABLE II
PARAMETER VALUES FOR OPTIMAL TOLERANCE VALUE.

Basic Entangler Layer-based PQC
Original
circuit

Optimized
circuit

Optimized
circuit re-trained

Iris dataset (tolerance = 0.05)
Accuracy
(%) 90 50 86.67 (3.33% red.)

Depth 66 57 57 (13.6% red.)
Gate count 240 125 125 (47.9% red.)

Digits dataset (tolerance = 0.06)
Accuracy
(%) 90.2 69.4 95.3 (5.1% inc.)

Depth 76 60 60 (26.6% red.)
Gate count 300 121 121 (59.6% red.)

R (-0.54,1.76,0.46)

R(-0.84,0.09,2.11)

R(0.42,0.61,0.08)

R(-1.92,-2.93,1.63)

R(0.34,0.02,-1.04)

R(-0.22,-0.15,0.77)

R(0.51,-1.52,-0.01)

R(0.57,-0.04,-0.57)

T†

T

I

I

a b

RZ(-0.54) RY(1.76) RZ(0.46)

RY(1.76) T†

T† I S

I I

SS† Y

I I

T

T†

I T

T RY(-1.52) I

T T†

Fig. 3. (a) First strongly entangling layer of PQC trained on iris dataset, (b)
same layer after performing optimization shown in Algorithm 2

accuracy. However for digits dataset we gain a 5.1% boost in testing
accuracy.

Strongly entangling layer-based PQC: To further show robust-
ness of the proposed greedy algorithm, we optimize PQCs containing
a different kind of layer called as strongly entangling layer. The main
difference between basic entangler and strongly entangling layers
is the parametric rotation gate. While basic entangler layer has a
single rotation gate on each qubit (either RX, RY, or RZ), strongly
entangling layer has a special rotation gate R(ϕ,θ,ω) that is broken
down in QASM format as

R(ϕ, θ, ω) = RZ(ω) ·RY (θ) ·RZ(ϕ)

This effectively provides the PQC with 3 times the number of tunable
parameters a basic entangler layer which in turn, leads to better
performance. We show the first strongly entangling layer of a pre-
trained PQC trained on iris dataset in Fig. 3(a).

For every strongly entangling layer of the pre-trained PQCs, we
perform greedy optimization on each of the three gates present
on every qubit. Fig. 3(a) shows the strongly entangling layer of a
PQC prior to optimization and Fig. 3(b) shows the same layer after
performing optimization. Similar to the case with basic entangler
layers, some gates are optimized while others remain as before. In
this case, most of the gates have been optimized because of a high
tolerance value of 0.1. A sweep of tolerance value similar to the
case of basic entangler layers was performed for strongly entangling
layer-based PQCs. We select 0.1, 0.01 and 0.001 as the tolerance
values and for each tolerance value, we obtain the circuit depth,
gate count and accuracy of the optimized circuit. These results are
tabulated in Table III and we observe minimal degradation even at
high tolerance value like 0.1. This observation implies two things:
(i) the strongly entangling layers are more resilient to performance

TABLE III
TOLERANCE SWEEP RESULTS.

Strongly Entangling Layer-based PQC
Tolerance
value Depth Gate count Accuracy

Iris (46 depth, 240 gate count, 96% acc)
0.1 38 143 93.33
0.01 40 161 93.33
0.001 41 181 93.33

Digits (49 depth, 300 gate count, 94.4% acc)
0.1 41 159 93.05
0.01 41 202 91.6
0.001 41 222 94.4

TABLE IV
PARAMETER VALUES FOR OPTIMAL TOLERANCE VALUE

Strongly Entangling Layer-based PQC
Original
circuit

Optimized
circuit

Optimized
circuit re-trained

Iris dataset (tolerance = 0.25)
Accuracy
(%) 96 60 93.33 (2.67% red)

Depth 46 35 35 (23.9% red.)
Gate count 240 115 115 (52% red.)

Digits dataset(tolerance = 0.27)
Accuracy
(%) 94.4 90.27% 90.27 (4.13% red.)

Depth 49 32 32 (34.7% red.)
Gate count 300 128 128 (57.3% red.)

degradation caused by the greedy algorithm compared to basic
entangler layers, and (ii) the optimal tolerance value for strongly
entangling layer-based PQCs is even higher than 0.1. Once again, by
trial and error we find out that the optimal tolerance value for the
two PQCs are 0.25 (iris dataset) and 0.27 (digits dataset). We tabulate
the subsequent parameter values for these tolerances in Table IV. For
iris dataset we observe around 3% reduction in accuracy for reduced
gate and circuit depth after re-training, and slightly higher than 4%
accuracy reduction for digits dataset. An interesting observation to
note for the case of digits dataset is that re-training it at the optimal
tolerance value does not improve its training accuracy. The rationale
could be convergence to a local minima for optimized PQC with
lower parameters.

Comparison with existing works: We compare the proposed
greedy algorithm with the existing works as tabulated in Table V.
Specifically, we compare with QuantumNAS [29], three variants of
CompVQC [20], and knowledge distillation [18]. We note that nearly
all the existing works outperform the proposed greedy algorithm. This
might seem disadvantageous, however there are flaws in the existing
works that are not present in the greedy algorithm. First, Zero-
Only Pruning method in QuantumNAS and CompVQC both suffer
from exponential search-space problems. As a result the search space
has to be trimmed down to reduce time complexity. The proposed
greedy algorithm has an already limited search space since the single
qubit non-parametric gates in the circuit are limited and not variable.
Second, all the three methods face scalability issues with respect to
higher number of qubits. Furthermore, the proposed greedy algorithm
can be easily incoroporated on top of CompVQC and knowledge
distillation works to obtain extra optimization of PQCs since they do
not optimize parametric gates. In the worst case, the time complexity
of greedy algorithm will scale as O(n · l) for a PQC with n qubits
and l layers in general.

Authorized licensed use limited to: Penn State University. Downloaded on February 27,2025 at 13:17:16 UTC from IEEE Xplore. Restrictions apply.

TABLE V
COMPARISON OF PROPOSED GREEDY ALGORITHM WITH EXISTING WORKS

IN LITERATURE

Proposed work % depth
reduction

% accuracy
degradation

Zero-Only Pruning
(QuantumNAS [29]) 42.1 2.16

CompVQC-Pruning [20] 38.8 0.91
CompVQC-Quant [20] 10.7 1.75
CompVQC [20] 61.1 0.91
Knowledge Distillation [18] 71.4 5-10%
Proposed greedy
algorithm 34.7 4.13

R (-0.54,1.76,0.46)

R(-0.84,0.09,2.11)

R(0.42,0.61,0.08)

R(-1.92,-2.93,1.63)

R(0.34,0.02,-1.04)

R(-0.22,-0.15,0.77)

R(0.51,-1.52,-0.01)

R(0.57,-0.04,-0.57)

T†

T

I

I

a b

RZ(-0.54) RY(1.76) RZ(0.46)

RY(1.76) T†

T† I S

I I

SS† Y

I I

T

T†

I T

T RY(-1.52) I

T T†

Fig. 4. Change in number of parameters in optimized PQC with tolerance
value. BEL: basic entangler layer, SEL: strongly entangling layer

V. DISCUSSION

Tolerance value vs #of remaining/non-decomposed parame-
ters: As the tolerance value increases, the number of remaining PQC
parameters (i.e., parametric rotation angles) reduces. This is because
at higher tolerance values, more number of parametric gates will be
converted to their approximate non-parametric representations. We
summarize the parameter trend with tolerance value in Fig. 4. From
the bar graph, we note (i) for basic entangler layer-based PQCs, digits
dataset has lower number of parameters compared to iris dataset, and
(ii) for strongly entangling layer-based PQC, iris dataset has lower
number of parameters compared to digits dataset. For tolerance value
of 0.1, both digits and iris dataset for basic entangler layer-based PQC
have zero parameters left since all the gates are approximated to their
non-parametric representations.

Greedy optimization of back-to-back parametric gates: The
proposed greedy algorithm focuses on optimizing individual paramet-
ric gates. However, when back-to-back parametric gates are individ-
ually optimized, there can be a chance that the combination of final
approximated non-parametric gates may cancel out to give identity
operation. For example, in the final qubit of Fig. 3(b), we have t,
id and t† operations, which are approximation of individual rotation
gates of R(0.57,-0.04,-0.57). However, the approximated approxima-
tion can be nullified to identity operation as t.id.t† = t.t† = id. In
other words, the greedy algorithm lacks awareness on combination
of parametric gates. A simple solution to this would be to generate
non-parametric representation of the combined back-to-back set of
parametric gates instead of working on individual parametric gates.

Considerations for coupling constraints: As mentioned earlier,

we only take decomposition of gates into account and not the
coupling constraints. As a result, only parametric rotation gates are
optimized and not CNOT gates. With the introduction of coupling
constraints, the SWAP insertion procedure must be taken into account,
leading to an increased circuit depth and gate count compared to the
optimal values shown in Table II.

VI. CONCLUSION

In this work, we proposed a novel greedy algorithm to opti-
mize parametric rotation gates by generating their approximate non-
parametric representation that minimizes a distance metric based
on unitary transformation matrices of original and approximate gate
representations. We perform this optimization on RX gates present
in basic entangler layers of pre-trained PQCs and further re-train the
overall optimized PQCs to recover the performance degradation due
to optimization.

ACKNOWLEDGEMENTS

We acknowledge the usage of IBM Quantum along with Pen-
nylane for performing all the experiments. All the relevent code
has been added to a GitHub Repository2. This work is supported
in parts by NSF (CNS-1722557, CNS-2129675,CCF-2210963,CCF-
1718474,OIA-2040667, DGE-1723687, DGE-1821766, and DGE-
2113839) and Intel’s gift.

REFERENCES

[1] I. M. Georgescu, S. Ashhab, and F. Nori, “Quantum simulation,” Reviews
of Modern Physics, vol. 86, no. 1, p. 153, 2014.

[2] I. Buluta and F. Nori, “Quantum simulators,” Science, vol. 326, no. 5949,
pp. 108–111, 2009.

[3] Y. Kim, A. Eddins, S. Anand, K. X. Wei, E. Van Den Berg, S. Rosenblatt,
H. Nayfeh, Y. Wu, M. Zaletel, K. Temme et al., “Evidence for the
utility of quantum computing before fault tolerance,” Nature, vol. 618,
no. 7965, pp. 500–505, 2023.

[4] M. Schuld, I. Sinayskiy, and F. Petruccione, “An introduction to quantum
machine learning,” Contemporary Physics, vol. 56, no. 2, pp. 172–185,
2015.

[5] Y. Cao, J. Romero, J. P. Olson, M. Degroote, P. D. Johnson,
M. Kieferová, I. D. Kivlichan, T. Menke, B. Peropadre, N. P. Sawaya
et al., “Quantum chemistry in the age of quantum computing,” Chemical
reviews, vol. 119, no. 19, pp. 10 856–10 915, 2019.

[6] D. Herman, C. Googin, X. Liu, A. Galda, I. Safro, Y. Sun, M. Pistoia,
and Y. Alexeev, “A survey of quantum computing for finance,” arXiv
preprint arXiv:2201.02773, 2022.

[7] R. Ur Rasool, H. F. Ahmad, W. Rafique, A. Qayyum, J. Qadir, and
Z. Anwar, “Quantum computing for healthcare: A review,” Future
Internet, vol. 15, no. 3, p. 94, 2023.

[8] A. A. Saki, M. Alam, K. Phalak, A. Suresh, R. O. Topaloglu, and
S. Ghosh, “A survey and tutorial on security and resilience of quantum
computing,” in 2021 IEEE European Test Symposium (ETS). IEEE,
2021, pp. 1–10.

[9] Y. Zhang and Q. Ni, “Recent advances in quantum machine learning,”
Quantum Engineering, vol. 2, no. 1, p. e34, 2020.

[10] S. Sun, Z. Cao, H. Zhu, and J. Zhao, “A survey of optimization methods
from a machine learning perspective,” IEEE transactions on cybernetics,
vol. 50, no. 8, pp. 3668–3681, 2019.

[11] M. Schuld, A. Bocharov, K. M. Svore, and N. Wiebe, “Circuit-centric
quantum classifiers,” Physical Review A, vol. 101, no. 3, p. 032308,
2020.

[12] M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J. Coles, “Cost function
dependent barren plateaus in shallow parametrized quantum circuits,”
Nature communications, vol. 12, no. 1, p. 1791, 2021.

[13] N. Killoran, T. R. Bromley, J. M. Arrazola, M. Schuld, N. Quesada,
and S. Lloyd, “Continuous-variable quantum neural networks,” Physical
Review Research, vol. 1, no. 3, p. 033063, 2019.

[14] A. Abbas, D. Sutter, C. Zoufal, A. Lucchi, A. Figalli, and S. Woerner,
“The power of quantum neural networks,” Nature Computational Sci-
ence, vol. 1, no. 6, pp. 403–409, 2021.

2GitHub repository link: https://github.com/KoustubhPhalak/
Greedy-PQC-Optimization

Authorized licensed use limited to: Penn State University. Downloaded on February 27,2025 at 13:17:16 UTC from IEEE Xplore. Restrictions apply.

[15] Y. Du, M.-H. Hsieh, T. Liu, and D. Tao, “Expressive power of
parametrized quantum circuits,” Physical Review Research, vol. 2, no. 3,
p. 033125, 2020.

[16] C. M. Dawson and M. A. Nielsen, “The solovay-kitaev algorithm,” arXiv
preprint quant-ph/0505030, 2005.

[17] J. Von Neumann, Mathematical foundations of quantum mechanics: New
edition. Princeton university press, 2018, vol. 53.

[18] M. Alam, S. Kundu, and S. Ghosh, “Knowledge distillation in quantum
neural network using approximate synthesis,” in Proceedings of the 28th
Asia and South Pacific Design Automation Conference, 2023, pp. 639–
644.

[19] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[20] Z. Hu, P. Dong, Z. Wang, Y. Lin, Y. Wang, and W. Jiang, “Quantum
neural network compression,” in Proceedings of the 41st IEEE/ACM
International Conference on Computer-Aided Design, 2022, pp. 1–9.

[21] G. Aleksandrowicz, T. Alexander, P. Barkoutsos, L. Bello, Y. Ben-Haim,
D. Bucher, F. J. Cabrera-Hernández, J. Carballo-Franquis, A. Chen,
C.-F. Chen et al., “Qiskit: An open-source framework for quantum
computing,” Accessed on: Mar, vol. 16, 2019.

[22] M. Skilbeck, E. Peterson, appleby, E. Davis, P. Karalekas, J. M.
Bello-Rivas, D. Kochmanski, Z. Beane, R. Smith, A. Shi, C. Scott,
A. Paszke, E. Hulburd, M. Young, A. S. Jackson, BHAVISHYA,
M. S. Alam, W. Velázquez-Rodrı́guez, c. b. osborn, fengdlm, and
jmackeyrigetti, “rigetti/quilc: v1.21.0,” Jul. 2020. [Online]. Available:
https://doi.org/10.5281/zenodo.3967926

[23] S. Sivarajah, S. Dilkes, A. Cowtan, W. Simmons, A. Edgington, and
R. Duncan, “t— ket¿: a retargetable compiler for nisq devices,” Quantum
Science and Technology, vol. 6, no. 1, p. 014003, 2020.

[24] Z. Li, J. Peng, Y. Mei, S. Lin, Y. Wu, O. Padon, and Z. Jia,
“Quarl: A learning-based quantum circuit optimizer,” arXiv preprint
arXiv:2307.10120, 2023.

[25] T. Fösel, M. Y. Niu, F. Marquardt, and L. Li, “Quantum cir-
cuit optimization with deep reinforcement learning,” arXiv preprint
arXiv:2103.07585, 2021.

[26] I. Moflic, V. Garg, and A. Paler, “Graph neural network autoen-
coders for efficient quantum circuit optimisation,” arXiv preprint
arXiv:2303.03280, 2023.

[27] X. Zhou, Y. Feng, and S. Li, “A monte carlo tree search framework for
quantum circuit transformation,” in Proceedings of the 39th International
Conference on Computer-Aided Design, 2020, pp. 1–7.

[28] R. Duncan, A. Kissinger, S. Perdrix, and J. Van De Wetering, “Graph-
theoretic simplification of quantum circuits with the zx-calculus,” Quan-
tum, vol. 4, p. 279, 2020.

[29] H. Wang, Y. Ding, J. Gu, Y. Lin, D. Z. Pan, F. T. Chong, and S. Han,
“Quantumnas: Noise-adaptive search for robust quantum circuits,” in
2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 2022, pp. 692–708.

[30] R. A. Fisher, “Iris,” UCI Machine Learning Repository, 1988, DOI:
https://doi.org/10.24432/C56C76.

[31] E. Alpaydin and C. Kaynak, “Optical Recognition of Hand-
written Digits,” UCI Machine Learning Repository, 1998, DOI:
https://doi.org/10.24432/C50P49.

Authorized licensed use limited to: Penn State University. Downloaded on February 27,2025 at 13:17:16 UTC from IEEE Xplore. Restrictions apply.

