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Abstract—Quantum Machine Learning (QML) is an acceler-
ating field of study that leverages the principles of quantum
computing to enhance and innovate within machine learn-
ing methodologies. However, Noisy Intermediate-Scale Quantum
(NISQ) computers suffer from noise that corrupts the quantum
states of the qubits and affects the training and inferencing
accuracy. Furthermore, quantum computers have long access
queues. A single execution with a pre-defined number of shots
can take hours just to reach the top of the wait queue, which
is especially disadvantageous to Quantum Machine Learning
(QML) algorithms that are iterative in nature. Many vendors
provide access to a suite of quantum hardware with varied
qubit technologies, number of qubits, coupling architectures,
and noise characteristics. However, present QML algorithms
do not use them for the training procedure and often rely on
local noiseless/noisy simulators due to cost and training timing
overhead on real hardware. Additionally, inferencing is generally
performed on reduced datasets with fewer datapoints. Taking
these constraints into account, we perform a study to maximize
the inferencing performance of QML workloads based on the
choice of hardware selection. Specifically, we perform a detailed
analysis of quantum classifiers (both training and inference
through the lens of hardware queue wait times) on Iris and
reduced Digits datasets under noise and varied conditions such
as different hardware and coupling maps. We show that using
multiple readily available hardware for training rather than
relying on a single hardware, especially if it has a long queue
depth of pending jobs, can lead to a performance impact of only
3-4% while providing up to 45X reduction in training wait time.

Index Terms—Quantum Hardware, Quantum Machine Learn-
ing, Inferencing

I. INTRODUCTION

In recent years, the field of quantum computing has wit-
nessed significant growth, propelled by its potential to solve
complex problems far beyond the reach of classical computing
paradigms [1]. This emerging technology, characterized by
its principles of superposition, entanglement, and quantum
interference, offers unprecedented computational advantages,
promising revolutionary breakthroughs [2], [3] in various dis-
ciplines, including cryptography [4], finance [5], [6], chemistry
and material science [7], and healthcare [8]. One of the
most promising applications of quantum computing lies in
the domain of machine learning, where the computational
advantages of quantum algorithms can be leveraged to enhance
the efficiency and capability of traditional machine learning
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Fig. 1. Training reduced Digits dataset (classes 8,9) on randomly allocated
configurations gives poor inferencing results. The training is done on 127
qubit hardware where we observe a maximum inferencing performance up
to 66%, suggesting that there is room for improvement with regards to the
choice of qubit configuration and even hardware.

algorithms [9]. The synthesis of quantum computing and
machine learning has given rise to a new interdisciplinary field
known as Quantum Machine Learning (QML), which seeks
to harness quantum computational advantages to improve
machine learning tasks. Examples of quantum machine learn-
ing algorithms, such as Quantum Neural Networks (QNN)
[10], Variational Quantum Eigensolver (VQE) [11], Variational
Quantum Classifier (VQC) [12], and Quantum Support Vector
Machine (QSVM) [13], illustrate the potential of quantum
computing to provide solutions to otherwise intractable learn-
ing problems.

However, the practical realization of QML’s potential is cur-
rently hindered by the limitations of the Noisy Intermediate-
Scale Quantum (NISQ) technology era [14] such as gate
errors, decoherence, and crosstalk errors [15] and adhering
to the hardware constraints e.g., coupling map that lead to
performance degradation. Suppose, we want to train a QNN
on a particular quantum hardware for performing binary
classification. One iteration/epoch of training will constitute
classifying all the data points by predicting their classes and
using the predictions to compute the gradient and update
the QNN parameters. Considering classifying even a single
data point, the QNN will (i) undergo a transpilation process
to make the circuit hardware compliant. This will increase
the depth and gate count of the circuit, making it more
susceptible to noise and, (ii) make multiple executions (also
referred to as shots) to compute accurate expectation values
for each datapoint. Repeating this process for all data points
and multiple epochs can be challenging, given the NISQ
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Fig. 2. Main methodology for obtaining best inferencing results. We select 1⃝ suitable model that has the best entangling arrangement. 2⃝ The multi hardware
training is performed as follows: a⃝ we perform configurational analysis based on various properties such as coherence times, error rates and circuit depth
and give a cumulative score to each configuration. Then all the configurations are sorted by score. b⃝ The top scoring configurations from each hardware are
selected for multi-hardware training. 3⃝ Inferencing is performed using the multi-hardware trained model and top performing values are noted. Note that I-V
denote coupling maps as shown in Fig. 3(d).

constraints such as hardware wait times and noise levels. These
constraints underscore the importance of hardware selection
for QML workloads without significant degradation in training
and inference accuracy.

Previously, efforts have been made to mitigate the effects of
some of the above constraints that include employing circuit
concurrency in the QML training pipeline [16] (mitigating
noise and reducing wait time), directly converting quantum
circuits into native pulse schedules without the need for
transpilation [17] (mitigating noise) and a similar work [18]
(mitigating noise) using state preparation circuits catered to
work robustly under noise [19] (mitigating noise), performing
noise-aware training [20] (mitigating noise) and training the
unitary operator representation of a quantum circuit instead of
the quantum circuit itself [21] (mitigating noise).

Motivation: Suppose a user wants to train their QNN model
on real quantum hardware, they accordingly define their QNN
network consisting of an appropriate state preparation circuit
to load classical data in quantum Hilbert space, the Parametric
Quantum Circuit (PQC) consisting of trainable quantum layers
and measurement operations for classical gradient computation
and optimization of PQC parameters. However, suppose the
user does not take the hardware constraints into account
such as the coupling map and noise, and arbitrarily train
their QNN without explicitly specifying a reasonably good
configuration. In that case, there are chances that the QNN
will be mapped to a poor configuration of qubits that can
have high error rates, low coherence times, and high tran-
spilation depth. For example, if a user wants to train their
8 qubit QNN using the Digits dataset (binary classification,
classes 8 and 9) on 127 qubit hardware (qubits 0 to 126),
with no configuration specified. There are chances that the
QNN can be mapped to the following set of 8 qubits: (i)
[9,10,11,12,17,30,29,28], (ii) [79,80,81,82,83,84,85,86] or (iii)
[97,98,99,100,110,118,119,120]. These configurations have
mean two qubit error rates up to as high as 0.31, and mean
coherence times of all qubits as low as 70µs. These factors

will corrupt the qubit states, leading to significant performance
degradation. We can see that the inferencing performance
reaches only a maximum of 66% for all three configurations
combined (Fig. 1). The situation can become even worse for
multi-hardware training if the coupling maps are not chosen
carefully.

Proposed approach: In this work, we address the above
concern by studying training of QNN on multiple hardware to
maximize inferencing performance while cutting down wait
time. We show the overall methodology in Fig. 2. We choose
the appropriate model, then perform configurational analysis
to find out the best configurations and hardware and use them
for multi-hardware training. Finally, we perform inferencing
and obtain the results. Note that while in practice step 2
(multi-hardware training) should ideally run on real hardware,
because of hardware access restrictions we perform step 2
using noisy simulations. Although we use the Iris and reduced
Digits datasets, the proposed methodology is generic and can
be extended to larger datasets, such as a reduced Cifar-10
dataset as shown in the later part of this paper.

In the rest of the paper, Section II provides relevant back-
ground and related works. Section III explains the training
setup followed by multi-hardware training setup and infer-
encing results in Section IV. Next, we perform additional
analysis such as variation of inferencing performance, the
effect of coupling map, real hardware queue depth analysis,
and scalability to larger datasets in Section V. Finally, we
draw conclusions in Section VI. All the code corresponding
this work can be found in our GitHub repository1.

II. BACKGROUND AND RELATED WORKS

A. Quantum Computing

Qubits are the fundamental units of a quantum computer,
equivalent to bits for classical computers. A qubit stores
information in a quantum state, which is represented using

1GitHub repository link: https://github.com/KoustubhPhalak/QuaLITi-
QML-Workload-Optimization

https://github.com/KoustubhPhalak/QuaLITi-QML-Workload-Optimization
https://github.com/KoustubhPhalak/QuaLITi-QML-Workload-Optimization


a 2x1 vector. It is mathematically denoted as |ψ⟩ =
[ α
β

]
,

where where |α|2 represents the probability of qubit being
measured to 0 and |β|2 represents the probability of qubit
being measured to 1. There are two special states with α = 1,
β = 0 ( |0⟩ =

[
1
0

]
) and α = 0, β = 1 ( |1⟩ =

[
0
1

]
).

These are known as basis states and are quantum analogous to
classical 0 and 1 bit values respectively. The quantum state of
a qubit is changed with the help of quantum gates, which are
unitary matrix operations. These gates work either on a single
qubit (e.g., Hadamard gate, Pauli X/Y/Z gates, etc.) or on
multiple qubits (CNOT gate, Pauli CY/CZ gate, SWAP gate,
Toffoli gate, etc.). Combining qubits and quantum gates, we
obtain quantum circuits that are ordered sequences of quantum
gates placed on qubits. All the gate operations of qubits are
eventually collapsed to classical bit values (either 0 or 1)
[22]. A special kind of quantum circuit, known as Parametric
Quantum Circuit (PQC) consists of parametric rotation gates
(such as U, Pauli RX/RY/RZ, etc.) that can be tuned classically
using traditional optimization algorithms. These PQCs can be
thought of as trainable ML models that form an integral part
of QNNs in QML.

B. Cloud-based NISQ Quantum Computing

Modern NISQ quantum computers today are typically ac-
cessed via a cloud service from vendors such as IBM [23],
Google [24], and Amazon [25]. The general way to access a
quantum computer is (1) the user would write the program
containing the specific quantum circuit for their task, (2) the
user would then send the program to the cloud service along
with the target hardware to run the quantum circuit on and
some extra metadata (such as number of shots, optimization
level for transpilation, number of ancilla qubits, etc.), (3)
the cloud service would allocate the user’s program to the
desired hardware, after which the hardware would run the
program, generate the results and send them back to the cloud
service, (4) finally, the cloud service sends the results from
the quantum hardware back to the user.

However, there is a major problem that arises from such
an access model. Due to the limited availability of quantum
computers, a single quantum computer has a long access
queue that can have up to hours of wait time until the user’s
program reaches the top of the queue. This problem is further
aggravated for QML algorithms, that require iterative runs for
optimizing the rotation gate parameters for which selecting
a quantum hardware that has less wait time is an important
aspect for consideration in the QML training pipeline.

C. Noise in quantum hardware

The performance of QNNs, like all quantum computing
systems, is significantly influenced by various forms of noise,
each impacting the accuracy and efficiency of the system in
distinct ways. A common source of error within QNNs is
decoherence, a phenomenon where qubits lose their quan-
tum state due to unintended interactions with the external
environment. This loss is essentially an energy dissipation
from the qubits, leading to a degradation of the quantum

coherence of the system and, consequently, its computational
capabilities. Another error is crosstalk which occurs when
there are unwanted interactions specifically between qubits
that are quantum mechanically coupled. These interactions can
alter the state of neighboring qubits in an uncontrolled manner,
introducing errors into the computation process.

The implementation of quantum gates also introduces poten-
tial sources of error. Quantum gates in QNNs are typically re-
alized through the application of microwave pulses in systems
utilizing superconducting qubits, or laser pulses in the case of
trapped-ion qubits. Any inaccuracies or imperfections in these
pulses can result in gate errors, where the intended quantum
operation is applied incorrectly, leading to deviations from
the expected computational outcome. Lastly, the process of
measuring quantum states introduces another avenue for error,
known as readout errors. Quantum measurement operations
can vary widely depending on the physical implementation of
the qubits. For instance, photonic qubits are often measured
using photon detectors, trapped-ion qubits may be measured
through the intensity of fluorescence, and superconducting
qubits might be measured via resonator coupling. Each mea-
surement technique has its own set of potential inaccuracies,
whether due to imprecise measurements, equipment limita-
tions, or inherent inaccuracies in the measurement apparatus
itself. These readout errors can significantly affect the accuracy
of the quantum computation, as they directly influence the
interpretation of the quantum system’s final state.

D. Related Works

Many efforts have been attempted to reduce the effect of
quantum hardware limitations. For example, [16] was pro-
posed to run concurrent executions of different training data
within the same batch for the same QNN circuit on different
available qubits. [17], [18] propose converting Variational
Quantum Algorithms (VQA) into pulse schedules such that the
pulses are native to the quantum hardware and have tunable
parameters. By training these parameters, the authors train the
original model. Works like [19], [20] take the effect of noise
into account and incorporate them into the VQA, such as cre-
ating noise-resilient state preparation circuit for better training,
and injecting quantum noise during training to make it noise-
aware and performing post-measurement processing, such as
quantization and normalization of measurement outputs. Fi-
nally, [21] propose training unitary operator representation of
a QML ansatz (2N ∗ 2N in size for N qubits) as compared to
training the ansatz itself. The authors use a gradient descent
algorithm for optimization and also use partitioning of the
unitary operator for further time complexity reduction. Out of
all these works, only [16] takes hardware queue wait time into
consideration in its study and achieves up to 20x speedup. The
proposed approach is complementary in nature and could be
augmented in conjunction with [16] for additional benefit.
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Fig. 3. Coupling maps of (a) 20 qubit hardware, (b) 27 qubit hardware and
(c) 127 qubit hardware; (d) five coupling configurations I-V used for noisy
experiments.

TABLE I
8-QUBIT COUPLING CONFIGURATIONS USED IN DIFFERENT HARDWARE.

NOTE THAT C.M. = COUPLING MAP

C.M. 27Q 127Q 20Q

I [4,7,10,12,
15,18,20,23]

[14,18,19,20,
21,22,23,24]

[0,1,6,5,
10,11,15,16]

II [4,7,10,12,
13,15,18,20]

[19,20,21,22,
23,24,25,15]

[5,6,7,8,
9,14,13,3]

III [7,10,12,15,
18,20,13,14]

[20,21,22,23,
24,25,15,4]

[6,7,8,9,
14,13,3,2]

IV [10,12,15,18,
20,23,24,13]

[14,18,19,20,
21,22,23,15]

[0,1,2,3,
8,9,14,6]

V [4,7,10,12,
15,18,6,13]

[19,20,21,22,
23,24,15,33]

[5,6,1,2,
3,4,0,8]

III. TRAINING SETUP

A. Hardware and configuration selection

We first choose a set of quantum hardware and their
corresponding configurations for training and inferencing
QML models. Considering the latest release of Qiskit 1.0,
we select Fake20QV1() (20 qubits), Fake27QPulseV1() (27
qubits) and Fake127QPulseV1() (127 qubits) noisy sim-
ulators (containing real hardware calibrated data) from
qiskit.providers.fake provider library for conducting our ex-
periments. The coupling map of each of these hardware is
shown in Fig. 3. We select five topologically different 8 qubit
coupling maps (labeled I-V) for each hardware as shown
visually in Fig. 3(d) and with individual qubit information
in Table I. Considering the exponential simulation runtime
increase with growing qubits [26], [27], we pick small-scale
datasets such as the Iris and UCI Digits dataset for the training
process. Furthermore, we select all 3 classes in the Iris dataset
for classification and 2 sets of 2 class datasets in the Digits
dataset: 0,1 and 8,9 for performing classification2.

B. Model selection

We use 8-qubit QNNs containing classical data loading
circuits, Parametric Quantum Circuit (PQC), and measurement
operations. We select the input data loading scheme based on

2Henceforth, we refer to them as Digits01 and Digits89 respectively.

r = 1 r = 2 r = 3 r = 4

Fig. 4. Different arrangements of CNOT gates in SEL.

TABLE II
INFERENCING PERFORMANCE OF MODELS WITH VARYING r.

Range (r) Iris Digits01 Digits89
1 93.78% 89.35% 84.57%
2 86.00% 84.72% 83.73%
3 88.44% 90.74% 80.37%
4 74.22% 61.38% 75.23%

the dimensions of the input. Considering we have 8 qubit-
QNN, the Iris dataset (4 size vector) can fit with an n features
to n qubits embedding, while the Digits dataset (64 size vector)
can fit with a 2n features to n qubits embedding. So, we use
angle embedding (4 features on 4 qubits) for the Iris dataset
and amplitude embedding (64 features on 6 qubits) for the
Digits dataset [28]. Strongly Entangling Layers (SEL) [29]
are selected for the PQC part since they create strong entan-
glement due to the presence of many entangling gates such as
CNOT gates, and also have many trainable parameters which
overall improves trainability of the PQC [30]. Furthermore, we
take the number of classes into account and accordingly set the
number of layers for each case. Specifically for the Iris dataset
(with 3 classes) we choose a model with 6 SEL and for the
reduced Digits datasets (with 2 classes) we choose a model
with 3 SEL. Finally, the measurement operations consist of
expectation value measurement in the Pauli-Z basis. For all the
runs, we perform training on 10 epochs, use Adam optimizer
(learning rate = 10−3), and use a batch size of 16.

Another aspect to consider in the model selection process
is the ansatz used in SEL. The SELs have a range parameter
r that can dictate the target qubit for a given control qubit
of the CNOT gate. Suppose the control qubit is on ith qubit
(ranging 0 to n−1), the total number of qubits in the QNN is n
and the range value is r, then the target qubit will be on qubit
number (i+r)(mod n). As an example, we show for an 8 qubit
SEL (entangling part in particular) how having different range
values changes the arrangement of CNOT gates in Fig. 4. We
select four range values r = {1, 2, 3, 4}, define a model for
each range value and train these models under noise using the
chosen datasets to determine the model with most appropriate
entanglement. For each case, the training is done on 27 qubit
hardware with configuration I (linear coupling map). We note
the inferencing results for this experiment in Table II. Note that
the tabulated values present mean inferencing performance for
10 inferencing runs to account for fluctuations due to noise3.

3For all the runs, we use mean accuracy of 10 inferencing runs.



TABLE III
ANALYSIS OF VARIOUS CONFIGURATIONS

Config. Decoherence score
normalized (A)

Readout score
normalized (B)

1Q error score
normalized (C)

2Q error score
normalized (D)

Layer depth score
normalized (E)

Final score=0.2(A)+0.2
(B)+0.1(C)+0.3(D)+0.2(E)

27Q(II) 90.23 83.91 100.00 93.80 10.47 75.06
27Q(I) 76.91 85.59 65.91 100.00 19.47 72.98
27Q(V) 100.00 100.00 100.00 68.69 2.08 71.02
27Q(III) 89.06 89.01 65.91 86.23 1.02 68.28
27Q(IV) 47.97 75.94 65.91 76.13 13.26 56.86
20Q(II) 3.69 29.04 9.09 13.78 100.00 31.59
127Q(V) 5.55 64.38 11.36 15.28 51.51 30.01
20Q(IV) 0.57 32.71 13.46 8.30 73.83 25.26
127Q(II) 10.11 64.38 11.36 22.50 28.72 28.53
127Q(I) 7.58 56.56 11.36 29.71 14.73 25.82
127Q(IV) 6.68 51.70 14.77 19.58 24.80 23.98
20Q(III) 0.00 22.19 7.95 9.60 54.73 19.06
20Q(I) 12.33 0.00 0.00 14.77 73.83 21.66
20Q(V) 7.55 34.61 13.46 0.00 48.46 19.47
127Q(III) 9.55 18.99 10.51 20.15 0.00 12.80

We observe that for the Iris dataset, r = 1 performs the best,
and for Digits01 and Digits89 r = 3 and r = 1 perform the
best, respectively. Therefore, we select these models for further
analysis.

IV. MULTI HARDWARE TRAINING

A. Configurational analysis

We identify the potentially best-performing configurations
by analyzing their various properties such as coherence times
(both T1, and T2 times), single and two-qubit error rates,
single-layer post-transpilation depth, and readout error. In
general, the presence of CNOT gates due to the SWAP
gate insertion procedure during transpilation makes the re-
sulting QNN circuit sensitive to the two-qubit error rate.
Next, the native gate set of a particular hardware plays an
important factor in determining the overall QNN depth. The
readout errors (preparing |0⟩, measuring 1 and preparing |1⟩,
measuring 0) can further degrade the performance. Finally,
individual single qubit error rates can lead to the erroneous
computation of quantum state, however, their effect can be
considered relatively small compared to other factors. For the
best results, (i) the two qubit error rate, post-transpilation
depth, readout errors and single qubit error rate should be
low (inversely proportional ↓), and (ii) the coherence times
should be high (directly proportional ↑). Furthermore, both
the types of aforementioned readout errors should be low
and both T1 and T2 times should be high. Taking this into
account, we can combine the T1 and T2 times by taking their
harmonic means and the readout errors using arithmetic mean.
The harmonic mean is sensitive to lower values, so a pair of
T1, and T2 values having even a single low value will have
a lower harmonic mean, implying a lower overall coherence
time for the configuration. Similarly, high readout error values
will yield a higher arithmetic mean. Next, we create a score
metric for every property in the range of [0,100]. We do this
as follows: (i) For inversely proportional properties, we take
the inverse/reciprocal of the property and normalize them in
the range of [0,100]. The normalization is done by taking the
minimum and maximum of the property value into account.

Suppose, if p is the list of all the scores of the property after
taking inverse, then for a property score pi (1 ≤ i ≤ 15 since
there are 5 configurations for 3 hardware), the normalized
score will be p′i = pi−min(p)

max(p)−min(p) ∗ 100. (ii) For directly
proportional values, we directly normalize the property score
value in the range [0,100] using the aforementioned formula
without taking the inverse. Finally, once the individual score
for each property is computed, we combine these individual
scores in a weighted fashion to obtain a final overall score for
each configuration. Based on the criticality of the properties
discussed earlier, we assign a weight of 0.3 to two qubit error
rate, 0.2 to post-transpilation layer depth, coherence times, and
readout error rates, and 0.1 to single-qubit error rate. These
results are tabulated in Table III in decreasing order of final
score from top to bottom. From the table, we observe that
all the 27 qubit hardware configurations are top performing,
owing to high coherence times and lower error rates.

B. Multi hardware training procedure

From the analysis performed in Table III, it would be moti-
vating to select the top-scoring configurations with the highest
scores. However, as we can see the top 5 scoring configurations
all belong to the 27 qubit hardware. From a training standpoint,
while the individual coupling map configurations might be
different we still dedicate all 10 epochs of training only to
27 qubit hardware. If the 27 qubit hardware has a large queue
of pending jobs, then the overall training time overhead will
be equivalently compounded based on the number of epochs
allotted to it for training. To address this challenge, we propose
an alternative configuration selection strategy to just selecting
the top-scoring configurations, where (i) We select one of the
top-scoring configurations from each hardware at least once
during training, and (ii) the next hardware selected for training
should be different from the current hardware chosen. We
specifically use these two criteria since they allow the usage of
top-performing hardware and avoid the case of choosing the
busiest hardware back to back, potentially saving training wait
time in the hardware queue. We satisfy these two conditions
by selecting five configurations (2 epochs per configuration)



TABLE IV
CONFIGURATIONS SELECTED FOR MULTI-HARDWARE TRAINING

PROCEDURE

Dataset Configurations (in order from left to right)
Iris 20Q, IV 127Q, V 27Q, I 20Q, III 127Q, IV
Digits01 127Q, II 27Q, I 20Q, III 27Q, V 20Q, IV
Digits89 27Q, II 20Q, II 127Q, V 27Q, I 20Q, IV

Fig. 5. Multi hardware training results. D01 = Digits01, D89 = Digits89.

such that the first three configurations are among the best-
performing configurations from each hardware and the next
two are chosen in a similar fashion but we also ensure that
these configurations have the least queue wait times. For
example, the top three scored configurations (in order) for each
hardware are (i) 20Q: II, IV, III (ii) 27Q: II, I, V (iii) 127Q: V,
II, IV. From these, we can randomly select one configuration
from each hardware, switch to a different hardware, and repeat
this process 5 times. We employ randomness in the selection
here as the scores of specified configurations for each hardware
are relatively close so selecting one configuration over the
other will not make much difference in the final inferencing
performance. A set of configurations chosen in this fashion for
the Iris dataset could be 20Q (IV), 127Q (V), 27Q (I), 20Q
(III), and 127Q (IV). The final training configurations for all
the datasets selected using this procedure are shown in Table
IV in order of training from left to right. Note that we assume
all the chosen configurations have the least wait time.

The results for this training procedure are shown in Fig.
5. We observe that 27 qubit hardware is the best-performing
hardware for inferencing, followed by 20 qubit hardware and
finally 127 qubit hardware. For 20, 27 and 127 qubit hardware
respectively, we note mean inferencing accuracy of (i) 92.76%,
93.91% and 91.24% for Iris dataset, (ii) 84.85%, 85.83% and
78.47% for Digits01 dataset and (iii) 77.65%, 83.45% and
72.57% for Digits89 dataset.

V. ADDITIONAL ANALYSIS

A. Performance variation with hardware and dataset

Variation with hardware: From Fig. 5, we observe infer-
encing performance variation as we switch to different hard-
ware. In particular, we note that 27 qubit hardware performs

TABLE V
MEAN HARDWARE CHARACTERISTICS OF DIFFERENT HARDWARE FOR ALL

COUPLING CONFIGURATIONS COMBINED. NOTE THAT
A={ID,U1,U2,U3,CX} AND B={ID,RZ,SX,X,CX,RESET}.

Property 20Q 27Q 127Q
2q error rate 0.0172 0.0085 0.0147
Basis gate set A B B

the best, followed by 20 qubit hardware and finally the worst-
performing 127 qubit hardware. This trend can be explained
by examining internal hardware characteristics.

We show the mean hardware characteristics for all coupling
configurations combined such as mean two qubit error rates in
Table V and the native basis gate set for every hardware. We
observe that 27 qubit hardware has the best two-qubit error
rate (0.0085) (which matches with the high two-qubit error
scores of all 27 qubit hardware in Table III). The 20-qubit
and 127-qubit hardware have two-qubit error rates that are a
magnitude of order higher (0.0172 and 0.0147 respectively)
than the 27-qubit hardware (which explains why it shows
the best performance). Furthermore, the 20 qubit hardware
has a different basis gate set compared to the other two,
which leads to lower post-transpilation depth. For example,
an amplitude embedding circuit along with a single SEL with
r=1 post-transpilation has an average depth of 608 on 127 qubit
hardware while having 321 on 20 qubit hardware. Therefore,
even if the two-qubit error rate is higher, the lower post-
transpilation depth compensates for the error rate and gives
higher performance for 20-qubit hardware, as compared to
the 127-qubit hardware. However, if 27 qubit hardware has
a large queue, then we may lose performance by selecting
other hardware in the process of optimizing wait time. This is
a trade-off between the wait time and inferencing performance
that should be made while choosing the desired configurations.

Variation with dataset: As mentioned earlier, we utilize an-
gle embedding to embed a vector of size 4 onto 4 qubits using
parametric rotation angles for the Iris dataset, and amplitude
embedding to embed 64 size feature vectors onto 6 qubits. Un-
der ideal conditions, both the state preparation circuits perform
well. However, when coupling constraints of hardware are
taken into account, an amplitude embedding circuit requires
depth exponential in the number of qubits used [31]. This
contributes significantly to the overall post-transpilation circuit
depth, leading to degradation in performance. This can be seen
when we compare the performances of the Iris and Digits
dataset in Fig. 5. We note that Iris dataset always shows greater
than 90% inferencing performance for any configuration, and
Digits dataset shows inferencing performance below 90%,
sometimes even below 80%.

We also observe significant performance differences within
the two Digits datasets. Structurally, both datasets have images
of the same dimensions (8x8 images, or 64x1 size vector
for the case of training). This means that both datasets will
have the same amplitude embedding depth post-transpilation.
Numerically, we observe a post-transpilation depth for the
amplitude embedding circuit of roughly 490 for both datasets.
The remaining difference then would be the digits present in



Fig. 6. Variation in inferencing performance with different coupling maps for
multi-hardware training setup.

the images themselves, specifically the structure of the digits.
For the case of Digits01, 0 has a round ‘o’ shape while 1
has line ‘|’ shape, while for Digits89 digit 8 has two ‘o’
shapes while 9 has one ‘o’ shape attached to a ‘|’ shape.
Under noiseless conditions, the selected model can classify
both datasets with greater than 90% accuracy. However, under
noise, the same model would probably find it easier to dis-
tinguish between images containing two distinct shapes (‘o’
and ‘|’) like 0 and 1, as compared to images having common
shapes (‘o’ shape) like 8 and 9. This can potentially explain
the lower performance in the Digits89 dataset as compared to
the Digits01 dataset.

B. Effect of changing coupling map

We visualize previous results from the viewpoint of cou-
pling maps. We restructure multi-hardware training results
from Fig. 5 in Fig. 6 in the form of boxplots for each coupling
map and every dataset. An indicator of a good coupling map
configuration is the lower fluctuation it shows across different
hardware. Across all the three datasets combined for coupling
maps I to V respectively, we observe mean fluctuations of
3.74%, 3.46%, 2.59%, 3.33%, and 2.96%. From these values,
we can conclude that coupling maps III, and V are the most
resilient for inferencing multi-hardware trained models.

C. Hardware queue depth analysis

We observe queue depth variation of real hardware (IBM
Brisbane, IBM Kyoto and IBM Osaka) with time. We show
boxplot for queue depth (recorded from 04/10/2024 16:30 to
04/12/2024 19:30) in Fig. 7. We note that IBM Brisbane is
the busiest out of all three, followed by IBM Kyoto and IBM
Osaka. From the boxplots, we note the overall fluctuation
in queue depth (i.e. standard deviation) as 88 jobs for IBM
Brisbane, 74 jobs for IBM Kyoto, and 43 jobs for IBM Osaka.
To get an idea of how much wait time these queue depths
translate to, we choose a dummy 8-qubit circuit (consisting of
only a single RZ gate on every qubit) and send it for execution
on each circuit. The queue wait times for this circuit is

Fig. 7. Queue depth boxplots for different IBM quantum hardware.

tabulated in Table VI. We observe that for the aforementioned
time period, Kyoto has the largest wait time per circuit (44.3s),
followed by Brisbane (14.1s) and Osaka (1s). Using this data,
we estimate the single inference run time. For our datasets,
we select a 70:30 split for training and testing, which would
mean (for inferencing) 45 data points for the Iris dataset and
108 data points for both the Digits01 and Digits89 datasets.
Assuming each datapoint run would wait for the computed
wait time, we obtain an overall inferencing wait time of 634,
1993, and 45 seconds on IBM Brisbane, IBM Kyoto, and IBM
Osaka respectively for the Iris dataset and 1522, 4784, and 108
seconds respectively for both the Digits datasets for a single
inferencing run. We can also extrapolate the average wait time
to estimate training wait time. For example, consider the Iris
dataset for training on the IBM Osaka machine. The training
set will have 105 images, so for an average wait time of 1s
and 10 epochs of training, the total training wait time will be
roughly 17 minutes. We tabulate all the training wait times for
all datasets on all hardware in Table VI. From these values,
we note up to nearly as high as 45X reduction (per epoch)
in training wait time when the training hardware is switched
from IBM Kyoto to IBM Osaka. This (potentially) is more
than twice the speedup that is achieved in [16].

D. Scalability to larger datasets

We also show that our methodology is scalable to larger
datasets. In particular, we train a hybrid quantum-classical
neural network (with few convolution layers followed by QNN
having 8 qubits) using a multi-hardware training setup for
the Cifar-10 dataset [32]. We use a reduced version of the
dataset consisting of airplane (class 0) and frog (class 6)
classes (300 images per class, 70:30 train-test split). Based on
the best-scoring configurations from Table III, we select the
following configurations: 27Q(II), 20Q(II), 127Q(V), 27Q(I)
and 20Q(IV). For all configurations combined, we note mean
inferencing accuracy of 80.96%, 82.84%, and 80.59% for
20, 27, and 127-qubit hardware respectively. Once again, we
observe that 27-qubit hardware performs the best, followed
by 20-qubit hardware, and finally 127-qubit hardware. We
show the boxplots of inferencing performance for various



TABLE VI
TRAINING AND INFERENCING WAIT TIMES ON REAL HARDWARE

H/W Queue wait
time (A)

Queue
depth (B)

Avg wait time
C = (A ÷ B)

# Train data
(D, Iris/Digits)

Train wait time
(C*D*10÷60)

# Inf. data
(E, Iris/Digits)

Inf. wait
time (C*E)

Brisbane 5h 40m 1447 14.1s 105/252 247/592 min 45/108 634/1522s
Kyoto 2h 15m 183 44.3s 105/252 775/1860 min 45/108 1993/4784s
Osaka 1s 1 1s 105/252 17.5/42 min 45/108 45/108s

Fig. 8. Inferencing performance on various hardware for multi-hardware
training on reduced Cifar-10 dataset.

hardware in Fig. 8. We also compare these results with another
model that is trained only on the best-scoring configuration
27Q(II). From this model, we note mean inferencing accuracy
of 82.78%, 82.33%, and 81.82% respectively for 20, 27, and
127-qubit hardware respectively. From this, we note a mean
accuracy reduction of 0.84% across all hardware when we
switch from single hardware to multi-hardware training for
the Cifar dataset.

VI. CONCLUSION

In this work, we proposed a novel methodology to train
QML models on multiple hardware. First, we selected a
suitable model followed by a configurational analysis of all
configurations. Based on the intuition gained, we chose the
top-scoring configurations and proposed a multi-hardware
training setup. The results of multi-hardware training show
that small datasets such as Iris are resilient to the effect of
noise, however, more complex datasets such as Digits images
are susceptible to different factors such as coupling constraints
and noise characteristics. Finally, we note that the proposed
methodology can be scalable to larger datasets such as RGB
Cifar-10 images yielding reasonable inferencing performance.
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