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ABSTRACT Quantum Machine Learning (QML) has recently emerged as a rapidly growing domain as an
intersection of Quantum Computing (QC) and Machine Learning (ML) fields. Hybrid quantum-classical
models have demonstrated exponential speedups in various machine learning tasks compared to their
classical counterparts. On one hand, training of QML models on real hardware remains a challenge due to
longwait queue and the access cost. On the other hand, simulation-based training is not scalable to largeQML
models due to exponentially growing simulation time. Since the measurement operation converts quantum
information to classical binary data, the quantum circuit is executed multiple times (called shots) to obtain
the basis state probabilities or qubit expectation values. Higher number of shots worsen the training time of
QMLmodels on real hardware and the access cost. Higher number of shots also increase the simulation-based
training time. In this paper, we propose shot optimization method for QMLmodels at the expense of minimal
impact on model performance. We use classification task as a test case for MNIST and FMNIST datasets
using a hybrid quantum-classical QMLmodel. First, we sweep the number of shots for short and full versions
of the dataset. We observe that training the full version provides 5-6% higher testing accuracy than short
version of dataset with up to 10X higher number of shots for training. Therefore, one can reduce the dataset
size to accelerate the training time. Next, we propose adaptive shot allocation on short version dataset to
optimize the number of shots over training epochs and evaluate the impact on classification accuracy. We use
a (a) linear function where the number of shots reduce linearly with epochs, and (b) step function where the
number of shots reduce in step with epochs. We note around 0.01 increase in loss and maximum ∼4%
(1%) reduction in testing accuracy for reduction in shots by up to 100X (10X) for linear (step) shot function
compared to conventional constant shot function for MNIST dataset, and 0.05 increase in loss and ∼5-7%
(5-7%) reduction in testing accuracy with similar reduction in shots using linear (step) shot function on
FMNIST dataset. For comparison, we also use the proposed shot optimization methods to perform ground
state energy estimation of different molecules and observe that step function gives the best and most stable
ground state energy prediction at 1000X less number of shots.

INDEX TERMS Quantum machine learning, shot optimization, classification.

I. INTRODUCTION
QML has gained a lot of traction since the past decade
with recent advancements in quantum computers [1].
In QML models, classical data is converted to quantum
Hilbert space [2], quantum operations are performed using

The associate editor coordinating the review of this manuscript and

approving it for publication was Prakasam Periasamy .

parametric quantum gates to change the state of the qubits
and classical measurement like expectation value or prob-
ability of computational basis states are performed based
on some observables like Pauli X/Y/Z operators. Quan-
tum Machine Learning (QML) models such as trainable
hybrid quantum-classical models [3] combine Machine
Learning (ML) methods with Quantum Computing (QC) to
show exponential speedup with lesser number of trainable
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parameters [4]. Similar quantum model performance as
classical model is shown by [5], [6], and [7] with up to
exponential reduction in model parameters. References [8],
[9], and [10] theoretically demonstrate exponential speedup
in runtime while [11] show runtime reduction practically
via simulation. While QML algorithms have shown the
promising quantum advantage theoretically, their power on
modern Noisy Intermediate-Scale Quantum (NISQ) comput-
ers [12] are currently limited by noise. As quantum computers
become more fault tolerant, the quantum advantage of QML
is expected to become practically realizable. Another poten-
tial hurdle for QML algorithms right now are the training
times. Publicly available quantum hardware have long queues
accommodated by circuits from various users from all around
the world. Therefore, a user’s quantum circuit may take as
long as ∼ 9-10 hours just to reach the top of the queue. For
iterative quantum circuits like Parametric Quantum Circuits
(PQC), this may not even be practically possible to train on
real hardware. So, users generally employ quantum simula-
tors with or without noise to train QML models. Quantum
simulators are fast due to lack of queues and can reduce
training time of iterative circuits from months/days to min-
utes. However, with increasing size of quantum circuits the
simulation based training will become exponentially slower
motivating hardware-based training.

Other than long wait queue, NISQ computers are costly
to access, especially the Quantum Processing Units (QPUs)
with large number of qubits. For example, 27-qubit Falcon
processors by IBM cost $1.60 per runtime second [13], IonQ
have quoted their costs at $0.0003 for 1 single qubit gate,
$0.003 for 1 two qubit gate, and $0.00165 per shot of quantum
execution [14], Rigetti has Aspen-11 and Aspen-M quantum
annealers priced at $0.3 per task and $0.00035 per shot [15].
More pricing data on other quantum hardware from different
companies like D-Wave, Xanadu and OQC can be found
in [15]. From these pricing data, it is evident that a QML
model with relatively large depth and shots can incur very
high cost which can further exacerbate for a training scenario
with large dataset.

In this paper, we propose an optimization method to reduce
the number of shots used per data point to accelerate train-
ing time (which will also reduce the training cost). We use
MNIST and FMNIST datasets and perform sweep of shots on
a shortened and full version of the dataset. Later, we propose
two methods to adaptively change the number of shots, one
which reduces the number of shots linearly as a function of
number of epochs, and second which is a step function where
the number of shots reduces by 100 every 10 epochs. We also
use the proposed linear and step functions to perform ground
state energy estimation of different molecules such as H2,
He+

2 , LiH, NH3 and BeH2.
The structure of the paper is as follows: in Section II

we introduce some relevant background and related work,
in Section III we present the QMLmodel used for training the
MNIST and FMNIST datasets for classification and describe
the results and analysis, in Section IV we present the adaptive

shot allocation methods, the results and a comparative anal-
ysis with existing methods. We also present the ground state
energy estimation results using our proposed shot allocation
methods in this section. Finally, in Section V we conclude the
paper.

II. BACKGROUND AND RELATED WORKS
In this section, we provide background on quantum comput-
ing and related works on shot optimization.

A. BACKGROUND
1) QUBITS
Quantum bits (or qubits) are quantum equivalent of classical
bits. They are fundamental units of a quantum computer.
While classical bits only have either 0 or 1 values, a qubit can
have a range of values, which can be in general represented
as a quantum state |ψ⟩ =

[ α
β

]
, where |α2| represents the

probability of qubit being measured to 0, and |β2| represents
the probability of qubit being measured to 1. A qubit has
two special states |0⟩ with α = 1, β = 0 and |1⟩ with
α = 0, β = 1, these states are called computational basis
states. A more general version of the qubit is the qudit, which
consists of d-computational basis states. Many technologies
like superconducting qubits, trapped ion qubits, neutral atom
qubits, quantum annealers have been implemented to realize
physical qubits on quantum systems.

2) QUANTUM GATES
A quantum gate is a unitary matrix operation performed on
either a single or multiple qubits to change the state (s). Some
commonly used single qubit gates are bit-flip gate, Hadamard
gate, Pauli X/Y/Z gates, RX/RY/RZ rotation gates, identity
gate, T gate, S gate and multi qubit gates include CNOT gate,
SWAP gate, Controlled SWAP gate, Toffoli gate, iToffoli
gate, Peres gate. Every quantum computer implements native
gate set so every non-native gate in the quantum circuit has
to be decomposed into the native gate set.

3) QUANTUM CIRCUIT
Quantum circuit is a program with ordered sequence of quan-
tum gates. At the end of every quantum circuit, there is
measurement operation that collapses the quantum state of
the qubit classically. The measurement can be expectation
value of an operator like Pauli X/Y/Z or probability values
of computational basis states.

4) SHOTS
Shots/trials refer to the number of repeated quantum execu-
tions of a quantum circuit. Usually, multiple shots are used
to compute expectation values and probability values. Higher
the number of shots, more accurate will be the output.Modern
NISQ computers have usage pricing based on number of
gates and number of shots. For number of shots, the price
varies from $0.00019 per shot all the way to $0.01 per
shot [15].
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5) PARAMETRIC QUANTUM CIRCUIT (PQC)
A Parametric Quantum Circuit is a trainable quantum circuit
similar to classical ML model. PQCs consist of parametric
quantum gates like RX, RY and RZ which have trainable
angle parameter θ and entangling gates like CNOT and
controlled Pauli/rotation gates that improve the fidelity of
computation. At the end, classical measurement is performed
either of probability values or qubit expectation values using
measurement gates to get the desired output.

6) QUANTUM NEURAL NETWORK (QNN)
Quantum Neural Networks are quantum equivalent of
classical neural networks (NN) and are considered as an
expansion on Deutsch’s model of quantum computational
networks [16]. Data is first encoded into quantum Hilbert
space using embedding methods like amplitude, angle or
basis embedding, which is then followed by PQC and finally
measurement operation. The PQCs are optimized using clas-
sical ML optimization methods like SGD, Adam, Adagrad,
etc. QNNs can also have hybrid quantum-classical architec-
tures consisting of classical layers and PQCs.

B. RELATED WORKS
Closely related work includes Coupled Adaptive Number
of Shots (CANS) [17], [18] and Random Operator Sam-
pling for Adaptive Learning with Individual Number of shots
(Rosalin) [19] methods. The CANS method is a modification
of Coupled Adaptive Batch Size (CABS) method [20] which
adaptively selects the batch size by maximizing the lower
bound on the the expected gain per computational cost. The
CANS method modifies the CABS method by adaptively
selecting the number of shots with the same criteria of maxi-
mizing lower bound on the expected gain per computational
cost. CANS method has two variants, first is individual-
CANS (iCANS) [17] which selects different number of shots
si for each individual partial derivative gi and picks the
maximum shot value sarg,max = max(si)∀i and putting a
soft cap on the maximum shot value smax so that sarg,max
does not exceed this value, and second is global-CANS
(g-CANS) [18] which determines a single shot value s based
on the full magnitude of gradient |g|. Rosalin method [19]
augments iCANS method with a weight sampling method to
make the estimator of cost function unbiased.

iCANS optimizer is used for solving Heisenberg spin chain
Variational QuantumEigensolver (VQE), while gCANS opti-
mizer is used to solve chemical configuration problems and
also find ground state of an Isingmodel with different number
of spins. Rosalin optimizer is used to compute the ground
states of different molecules.

In theory, the above works can also be extended to
optimize the number of shots for general QML workloads.
However, such efforts have not been pursued in literature.
Furthermore, gradient-based shot optimization may incur
stability issues for general QML workloads which may not
have well-behaved gradients similar to molecular problems.
To address these concerns, we propose a simpler alternative

FIGURE 1. Hybrid quantum-classical model used for training MNIST and
FMNIST datasets for classification.

such as, adaptive shot allocation which removes the depen-
dency of shot calculation on gradients and instead com-
putes the number of shots as a function of number of
epochs/iterations completed.

III. ANALYSIS OF HYBRID QUANTUM-CLASSICAL MODEL
A. BASIC QML SETUP
We use a hybrid QML model consisting of classical and
quantum layers to classify the images in MNIST dataset.
For classical layers, we use fully connected layers and
ReLU activation function and for quantum layers, we use
two 4-qubit Parametric Quantum Circuits (PQC). The
PQC uses amplitude embedding to map 16 features to
4 qubits, followed by 3 circular layers consisting of convo-
lution ansatz 1 and pooling ansatz from [21](shown in lower
bubble of Fig. 1) and three strongly entangling layers [22].
We pick ansatz 1 from [21] because it has lowest circuit depth,
which is useful in providing better fidelity of computation
during noisy hardware runs. We apply strongly entangling
layers to increase overall entanglement in the circuit. Accord-
ing to [23], having strongly entangled qubits can provide
exponential speedup for classification problems. All MNIST
images are first flattened from 28*28 size to a vector of
size 784. This size is reduced to 128 via a fully connected
layer. A ReLU activation function is used after the fully
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connected layer to improve convergence. This output is
then applied to another fully connected layer which further
reduces the vector size to 32, which is split to two vectors
of size 16 which are sent to two different quantum layers
having their own set of parameters. Note that we use two
4-qubit PQCs because we get better final classification accu-
racy as compared to using a single 5-qubit PQC that embeds
32 features on 5 qubits. Both the quantum layers compute
PauliZ expectation values of the qubits to give 4 dimensional
vectors. These 4 dimensional vectors are combined together
to a vector of size 8. A final fully connected layer is used
to scale the output dimension to size 10 which is used to
compute multi-cross entropy loss for 10 classes of digits.
The full QML model along with the structure of the 4 qubit
PQC is shown in Fig. 1. We initialize the parameters of our
model from a normal distribution with mean 0 and standard
deviation of 1 such that every time the initialization values of
the parameters are different.

We first perform sweep on the number of shots during
training of this QMLmodel for two different sizes of MNIST
and FMNIST datasets. The first dataset contains 1000 train-
ing images (100 randomly chosen per class) and 250 testing
images (25 randomly chosen per class) and is trained for
100 epochs, and the second dataset contains the complete
training (60,000 images) and testing (10,000 images) set
of MNIST, FMNIST datasets and is trained for 10 epochs.
We analyze the impact of parameter initialization values and
the proposed adaptive shot allocation on the shorter version
of the dataset.

B. IMPACT OF THE NUMBER OF SHOTS AND DATASET
SIZE
We sweep the number of shots from 1 to 1000 to study the
impact on training and testing accuracies and losses. We use
both the short and full versions of MNIST and FMNIST
datasets to estimate the impact of dataset size in this study as
well. Note that the shots numbers correspond to per image.
We plot the training and testing loss plots, training accuracies
and testing accuracies for short version of the datasets in
Fig. 2(a), (b) and (c) (MNIST), and (g), (h), and (i) (FMNIST)
respectively and for full dataset in Fig. 2(d), (e) and (f)
(MNIST), and (j), (k) and (l) (FMNIST) respectively.

The plots show a general trend of lower performance
with reduced shots. While this trend is not so clear for
short version of both the datasets (Fig. 2(a),(b) MNIST
and (g),(h) FMNIST), the trend is more clear for the full
dataset (Fig. 2(d),(e)). This trend is expected because a single
shot refers to single quantum execution of the PQC model,
and higher the number of shots, more accurate will be the
expectation value calculated for the qubits. Next, we observe
that the training accuracy for short version of the dataset
converges to 99-100% (MNIST) and 93-95% (FMNIST),
and for the full dataset to around 97-98% (MNIST) and
80-85% (FMNIST). We also observe testing accuracy for
short version of the dataset at around 90-91% (MNIST) and
75-80% (FMNIST) and for full dataset at around 96-97%

(MNIST) and 80-85% (FMNIST). Analyzing these observa-
tions, we note that (i) The short version of the datasets have
higher training accuracy and lower testing accuracy com-
pared to their full dataset counterparts. This implies that the
full dataset is able to provide better generalization with higher
testing accuracy and lower training accuracy. (ii) MNIST
dataset performs better overall compared to FMNIST dataset.
This is expected because FMNIST is a more complex dataset
with multiple classes having lot of similarities. For example,
as can be seen in Table 3 in [24] multiple images of Top,
Pullover, Dress, Coat, and Shirt look similar. There is also
a similar resemblance between Sandal, Sneaker and Ankle
Boots images. These similarities make it harder for the model
to identify the correct class of the image.

For MNIST dataset as we go from full dataset to the short
version, we note 0.02 increase in loss and ∼1% reduction in
testing accuracy for reduction in shots from 108 to 0.5 ∗ 106.
For FMNIST dataset we note 0.05 increase in loss for similar
reduction in shots. Finally, we observe that the training curves
for full dataset are smooth, while the short version have
bumps. For example, in Fig. 2(a) and (b) at around 40th

epoch we observe an increase in loss and decrease in training
accuracy in the form of bumps for certain shot values. For
FMNIST dataset we observe that the bumps are smaller but
more spikier. These bumps are formed due to small size of the
dataset. If the size of the dataset is increased, the frequency
and size of bumps will reduce. In the remaining analysis we
use the reduced datasets for adaptive shot allocation using
linear and step shot functions.

C. IMPACT OF PARAMETER INITIALIZATION
We initialize the model parameters from a normal distribution
with mean 0 and standard deviation 1. A good initialization
can accelerate training by starting from a point that is close
to global minima on the loss landscape [25]. We choose
15 such starting initializations and train the model onMNIST
dataset for each case. The loss, training accuracy and testing
accuracy for each case and the spread curve for each case
is shown in Fig. 3 (a), (b) and (c), respectively. From these
plots, our general observations are (i) the variation (light pink
color) for all the three curves are biggest in the range of
0-20 epochs (loss:±0.04, training accuracy: ±7.5%, testing
accuracy: ±9.77%), (ii) beyond 20 epochs the variation for
loss and training accuracy curves becomes negligible while
for testing accuracy it is small but non-negligible in the range
of 20-60 epochs (±3.3%) and becomes negligible beyond
60 epochs, and (iii) by 100th epoch, all the curves have
a negligible variation which implies a more deterministic
solution. Therefore, we conclude that as long as we initialize
the parameters from the normal distribution, we can expect
a deterministic final solution. We roughly observe a fast
convergence of training at around 20th epoch due to good
parameter initialization. We can also safely extrapolate these
observations to other different shot values as the the behavior
of parameter initializations is independent of the number of
shots used.
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FIGURE 2. Sweep plots for MNIST (FMNIST): number of shots (a),(b),(c) ((g),(h),(i)) training & testing loss plots, training and testing
accuracies respectively for short version, and (d),(e),(f) ((j),(k),(l)) training & testing loss plots, training accuracies and testing
accuracies respectively for full dataset.

FIGURE 3. Effect of different initializations on training. 15 different starting initializations are performed with short version of
MNIST dataset, 1000 shots in each case and (a) loss plot, (b) training accuracy and (c) testing accuracy spreads are plotted.

IV. PROPOSED ADAPTIVE SHOT ALLOCATION
A. BASIC IDEA
Based on the analysis from previous Section, it is evident that
higher number of shots may not be needed for QML tasks.
We propose two methods to adaptively reduce the number of

shots over training epochs: linear function method and step
function method. We represent the general linear function as
st = sstart−slope ∗ t , where st represents the shots being
used in t th epoch per image, sstart represents the starting
number of shots per image, and slope represents the rate at
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FIGURE 4. MNIST dataset plots for adaptive shot allocation. Shot function, loss plots, training and testing accuracies, respectively for linear
function (st = max(20, sstart −slope ∗ t)) with constant starting shots (sstart ) (a),(d),(g),(j), linear function with constant slope (slope) (b),(e),(h),(k)
and step function (st = 1000 − 100 ∗ ⌊

t
10 ⌋) (c),(f),(i),(l). In each of the shot function plots (a),(b),(c), we mention the total number of shots used for

training for each case.

which st reduces. We perform a sweep on sstart (with constant
slope = 10) and slope (with constant sstart = 1000), where
we vary sstart from 300 to 1000 shots in steps of 100 and
slope from 10 to 80 in steps of 10. We maintain a lower
bound of 20 shots for each of the sweep parameters (st =

max(20, sstart−slope ∗ t)) to ensure that expectation value
calculation is being done on sufficient number of classically
measured outputs. We denote the step function using the
formula st = 1000 − 100 ∗ ⌊

t
10⌋, where ⌊.⌋ is the floor

function. After every 10 epochs, we reduce the number of
shots used per image by 100. We start with 1000 shots and
continue this process for 100 epochs. We show the linear and
step shot functions in Fig. 4 (a), (b) (linear) and (c) (step)
respectively.

The rationale for choosing linear and step functions is
to have higher shots at the start of the training and then
gradually reduce the number of shots with training epochs.
The reason for doing this is (i) to ensure that the model
learns well in the starting epochs of training. Note that higher
number of shots implies more accurate expectation values or
probability values. Having a more accurate result at the start
is preferable so that the model can learn quickly. (ii) Once the
model has learnt sufficiently i.e., reached/reaching saturation,
using same number of shots would be wastage of computing
resources and training time. Therefore, we reduce the num-
ber of shots as a function of epochs to save this wastage.
We would want to put a lower bound of the minimum number
of shots used to ensure the computation of measurement is
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FIGURE 5. FMNIST dataset adaptive shot allocation plots. loss plots, training and testing accuracies, respectively for linear function
((st = max(20, sstart −slope ∗ t))) with constant starting shots (sstart ) (a),(d),(g), linear function with constant slope (slope) (b),(e),(h), and step
function (st = 1000 − 100 ∗ ⌊

t
10 ⌋) (c),(f),(i).

accurate enough and stable. One may also wonder how fast or
how slow should the number of shots be reduced. In general,
we do not want the shots to reduce very fast as it will affect
learning in the initial epochs, or too slow as it will lead to
wastage of shots.

As we show in the next subsection, we perform a sweep
on the slope and starting number of shots for the linear
function and show the results for optimal slope and starting
shots.

B. RESULTS
We plot the shot function curves and training results for
both the adaptive shot allocation methods in Fig. 4 (MNIST)
and Fig. 5 (FMNIST). For MNIST dataset, we observe that
sstart has more effect on testing accuracy compared to slope.
Sweep on slope at constant sstart = 1000 gives around
90-91% testing accuracy, while sweep on sstart with constant
slope = 10 gives more variation in testing accuracy around
87-91%. We observe that a lower sstart gives lower accu-
racy and more unstable training with bumps in the curves
compared to higher sstart . We get stable training as long as
sstart is high enough (1000 shots in this case) regardless of
slope. For all cases, we obtain 99-100% training accuracy.

We observe a minimum of 5.6 ∗ 106 total shots for sstart =

300, slope = 10 and maximum of 4.9 ∗ 107 total shots for
sstart = 1000, slope = 10 for training (excluding shots
used for testing). We roughly note 0.01 increase in loss and
∼4%maximum reduction in testing accuracy for reduction in
shots from 4.9 ∗ 107 to 5.6 ∗ 106. For step function, we use
a total of 5.4 ∗ 107 shots for training and observe 99-100%
training accuracy and 90-91% testing accuracy. For both the
linear and step function curves, we observe bumps in the plots
similar to plots of shots sweep for short version of MNIST
dataset. Based on these findings, we can conclude that linear
function is better than the step function as it provides similar
testing accuracy (90-91%, given sstart is high enough) while
being conservative in terms of total number of shots used for
training.

For FMNIST dataset, we observe a similar trend for train-
ing curves. For constant shots, lower slope gives better train-
ing accuracy and for constant slope, higher starting shots give
better training accuracy. Overall, we observe 82-92% range
of training accuracy and 70-80% testing accuracy. However,
this trend is not well-demarcated for testing accuracy curves.
For example, we observe that slope of 80 (78-80%) gives
higher testing accuracy compared to slope of 50 (74-76%),
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TABLE 1. Comparison of number of shots used and solution quality for various shot allocation methods for different problems. Note that sh: short
version, lo: full MNIST dataset (long).

and 500 starting shots gives better testing accuracy
(80-82%) compared to 1000 starting shots (76-78%). This
implies that for amore complex dataset like FMNIST, starting
with smaller number of shots with higher slope may be
preferable. A possible reason for this behavior is that lower
number of shots for training leads to less overfitting on
training set and better generalization on testing set.

C. COMPARATIVE ANALYSIS WITH EXISTING
APPROACHES
We compare the total number of shots consumed in pro-
posed methods with previous works in Table 1. We depict
usage for two different problems being solved namely, ground
state energy prediction of different compounds (previous
work) and classification of MNIST images (this work). Each
row shows two methods M1 and M2, the total number of
shots used, and the final solution quality. For the case of
ground state energy prediction problem the final solution is
the average energy above ground state (1E in Hartree) and
for MNIST classification it is final testing accuracy. He+

2
and NH3 ground state energies are found using gCANS and
iCANS methods, and for both cases gCANS gives better
solution than iCANS. However, for He+

2 problem, gCANS
consumes lesser shots than iCANS while for NH3 problem it
consumes higher shots. Rosalin and iCANSmethods are used
to find the ground state energies of LiH, H2 and BeH2 com-
pounds where both Rosalin and iCANS use 107 shots and

Rosalin gives better ground state energy. For MNIST classi-
fication, we compare linear function (sstart = 1000, slope =

10) with step function (for starting shots of 1000) and fixed
1000 shots with fixed 500 shots for both short version and full
dataset. Linear function and step function both give similar
testing accuracy in the range of 90-91% but linear function
is better overall as it consumes lesser shots. For constant shot
sweeps, we once again roughly observe 90-91% testing accu-
racy for both 1000 and 500 shots for short version dataset and
around 97% testing accuracy for full dataset. So 500 shots is
better as it consumes lesser shots overall while giving similar
accuracy. Overall, linear function is the most conservative
for MNIST dataset giving a maximum of 4.9 ∗ 107 total
shots. These shots are higher than gCANS for He+

2 case but
lower for NH3 case, higher than Rosalin for all LiH, H2 and
BeH2 and also higher than iCANS for all cases except for
NH3 case. The total number of shots used are of the same
order of magnitude (107) for all cases with the exception
of constant shot sweep with 1000 shots for short version
MNIST dataset and with 1000 and 500 shots for full MNIST
dataset (108).

For completeness of analysis, we employ the proposed shot
allocation methods for ground state energy estimation prob-
lem of different molecules and compare the results obtained
with those in previous works. We use constant shot func-
tion (∼ 105 shots), linear function (4.9 ∗ 104 shots) and
step function (5.4 ∗ 104 shots) as shown in Fig. 6 (f) and
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FIGURE 6. Ground state energy prediction plots for (a)BeH2, (b)H2, (c)He+

2 , (d)LiH and (e)NH3 molecules. We also show the shot functions
in (f).

estimate the ground state energy. We plot the prediction
curves along with reference energy (purple line) for BeH2,
H2, He

+

2 , LiH, NH3 in Fig. 6 (a)-(e) respectively. We observe
that linear function fluctuates a lot compared to constant
and step functions, so we say that step function performs
the best as it is relatively stable and is also closer to refer-
ence ground state energy with lesser number of shots com-
pared to constant function. Comparing predicted ground state
energy with reference ground state energy, we observe that
in general, there is a difference of 10−2 Ha < 1E< 10−1

Ha for all the molecules, which is slightly worse compared
to the CANS related methods. Final prediction of ground
state energy depends on the starting molecular Hamiltonian
of the molecule provided, which is then optimized using
a VQE circuit to obtain the final ground state energy of
the molecule. The molecular Hamiltonian is dependent on
the geometry of the molecule i.e. the coordinates of atoms
in space and bond distance between all the atoms in the
molecule. Therefore, a different molecule geometry will give
different molecular Hamiltonian and a different prediction for
ground state energy. The previous works do not explicitly
provide molecular Hamiltonian that are used to find ground
state energy. Only [19] refer [26] that provide molecular
Hamiltonians of H2, LiH and BeH2 molecules in their supple-
mentary material and even in that some details are missing.
Therefore, we obtain the geometry data of all the molecules
from PubChem database [27] to build the molecular Hamilto-
nian and optimize the VQE to obtain the ground state energy.
Note that the molecular geometry data obtained from Pub-
Chem database may not be exactly similar to the geometry
corresponding the molecular Hamiltonian used in previous
works. There may be a slight change, leading to different final
ground state energies.

Another aspect to be taken into consideration is the effect
of MNIST and FMNIST dataset size and quality on the

training of the QMLmodel. From the shots sweep of the short
version dataset and full dataset in Fig. 2, we can observe that
the short version dataset has bumps in curves leading to worse
performance at times, and the convergence of testing accuracy
(90-91%) is lower compared to full dataset (96-97%).
We observe similar case for FMNIST dataset for its short
version. These two differences in results can be owed to the
size of dataset chosen, and the quality of images chosen. Note
that in this work, for both the datasets we randomly select
100 images from each class for training and 25 images from
each class for testing, and the results presented for short ver-
sion are based on the dataset chosen using this method. It may
not be wise to increase the dataset size since it would imply
higher number of total shots required for training. A better
approach would be to improve the quality of dataset selected
for same size using methods such as, dataset distillation [28]
that distills the complete knowledge of a large dataset onto
a relatively smaller one. A distilled synthetic dataset from
MNIST dataset consisting of only 10 images (1 image per
class) can give up to as high as 94% testing accuracy for
a fixed starting initialization and of 100 images (10 images
per class) can give up to 80% testing accuracy for random
initialization in very few gradient descent steps (3 epochs).

V. CONCLUSION
Higher number of shots per iteration could pose a challenge
for QML training on hardware due to high training time and
access cost. In this paper, we show that higher shots per
iteration may not be needed for QML applications. We also
found that full dataset provides only 5-6% improvement in
testing accuracy at the cost of one order of magnitude higher
number of shots. Therefore, one can optimize the dataset to
accelerate training time. We further propose adaptive shot
allocation to optimize the number of shots for training time
acceleration. The linear shot function requires a lower bound
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to ensure stable training. For linear shot allocation method,
our analysis also showed that the starting shots has a signifi-
cant impact on testing accuracy compared to the slope of the
function. We also used the proposed shot allocation methods
on ground state energy estimation problem and conclude that
step function is the best in terms of stable energy prediction
and efficient shot usage.
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