
Received 4 April 2023, accepted 15 May 2023, date of publication 22 May 2023, date of current version 1 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3278600

Trainable PQC-Based QRAM for Quantum
Storage
KOUSTUBH PHALAK , (Student Member, IEEE), JUNDE LI , (Student Member, IEEE),
AND SWAROOP GHOSH , (Senior Member, IEEE)
Computer Science and Engineering Department, The Pennsylvania State University, State College, PA 16802, USA

Corresponding author: Koustubh Phalak (krp5448@psu.edu)

This work was supported in part by NSF under Grant CNS-1722557, Grant CNS-2129675, Grant CCF-2210963, Grant CCF-1718474,
Grant OIA-2040667, Grant DGE-1723687, Grant DGE-1821766, and Grant DGE-2113839; and in part by the Seed Grants from Penn
State Institute for Computational and Data Sciences (ICDS).

ABSTRACT QuantumMachine Learning (QML) is a new domain of Machine Learning (ML) and Quantum
Computing (QC) that uses a trainableVariational QuantumCircuit (VQC) to solve various learning problems.
Classical data is transformed to the quantum Hilbert space using an embedding scheme and the VQC
performs quantum operations on this transformed quantum data using parametric quantum gates. In this
work, we present a new embedding scheme using Quantum Random Access Memory (QRAM) that takes
address as input, and gives data as the output similar to a classical Random Access Memory (RAM).
We propose a basic circuit-based QRAM architecture and its application in, (a) storage for ML usage and,
(b) storage of binary data. For ML, we store images of digits dataset into the QRAM and perform binary
classification using a Quantum Neural Network (QNN). We observe that QNN driven by the proposed
QRAM converges faster (at 6th epoch) with 100% classification accuracy compared to QNN with normal
embedding and classical Fully Connected Neural Network (FCNN) setups which converge with same
accuracy at around 10th and 15th epochs, respectively. We obtain ≈ 63% classification accuracy on real
hardware from IBM. For storage of binary data, we measure Hamming Distance (HD) and percentage
correct predictions for quality evaluation of the proposed QRAM. We observe that the HD and percentage
correct predictions worsens as the number of address lines increases. We propose two techniques to improve
the QRAM accuracy namely, (i) clustering of raw data and allocating one QRAM per cluster and, (ii) bit
splitting to dividewider data into smaller chunks and allocating oneQRAMper split. Clustering provides best
results by improving the HD for 9-address QRAM by ≈1.95X than pure QRAM and ≈1.74X improvement
compared to bit-split (which provides ≈1.11X improvement than pure QRAM).

INDEX TERMS Quantum RAM, machine learning, classification.

I. INTRODUCTION
Quantum computing (QC) has grown rapidly in recent years
due to technological advancements in quantum hardware.
A sub-field of QC that has recently generated lot of interest
is Quantum Machine Learning (QML) which is the augmen-
tation of QC with Machine Learning (ML) to solve various
learning problems. QML can potentially offer quantum speed
up of algorithms like quantum clustering, quantum decision
trees, quantum support vector machines and quantum neural

The associate editor coordinating the review of this manuscript and

approving it for publication was Diego Oliva .

networks [1]. A key aspect in these algorithms is the conver-
sion of classical data to the quantumHilbert space. As per [2],
[3], supervised learning in the quantum domain is a kernel
method similar to classical support vector machines which
uses a non-linear kernel to map classical data to the large
Hilbert space. The non-linear kernel used is an embedding
scheme to encode classical data such as, amplitude embed-
ding which maps 2n features on n qubits, and angle embed-
ding and basis embedding that map n features on n qubits [4].
These quantum embeddings can be considered as a primitive
way of storing classical data in quantum format prior to
sending it to the actual quantum gates of the QML model

51892
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-1074-2158
https://orcid.org/0000-0003-2470-8233
https://orcid.org/0000-0001-8753-490X
https://orcid.org/0000-0001-8781-7993

K. Phalak et al.: Trainable PQC-Based QRAM for Quantum Storage

FIGURE 1. QRAM usage scenarios, (a) writing classical data onto QRAM
and forwarding to a quantum circuit and (b) storing intermediate
quantum data in QRAM and retrieve as needed.

during training/inference. However, they are not addressable
like classical memories. Instead, having a Quantum Random
Access Memory (QRAM) that stores and loads quantum data
would be much more effective for QML problems. The user
should be able to store new classical data or update it onto
the QRAM and load the stored quantum data as needed. The
existing QRAM architectures [5], [6], [7] write and read data
into superposition.

A QRAM can be used in following scenarios: (i) to write
classical data onto the QRAM and forwarding the data in
quantum format to a quantum circuit as a read operation
(Fig. 1(a)) and (ii) to store intermediate quantum data from
a quantum circuit into QRAM and reading that data from
the QRAM back to the quantum circuit. (Fig. 1(b)). The
second scenario is challenging to achieve given the technol-
ogy limitations of the existing quantum hardware. Neverthe-
less, higher order states of qubits (called qudits) as storage
elements have been proposed [8], [9]. A major limitation
of qudits is the quadratic increase in the error rates due to
presence of more than two states which in turn can degrade
the fidelity. Orthogonal to above approaches, quantum sen-
sors perform readout from optical memories via quantum
illumination [10], [11] to directly obtain the data in quantum
form for further processing. We propose a Parametric Quan-
tum Circuit (PQC)-based trainable approximate QRAM. The
proposed QRAM falls under the first scenario in Fig. 1(a).
We also show the application of the proposedQRAM for clas-
sification and storage of binary data. To the best of knowledge,
this is the first practically realizable approximate QRAM
architecture which can be used to load arbitrary data in
quantum form to any quantum circuit.

In the rest of the paper Section II describes background
and related works. Sections III, IV and V presents QRAM
architecture and its applications. We present discussion in
Section VI and conclude in Section VII.

II. BACKGROUND AND RELATED WORKS
A. BACKGROUND
1) QUBITS
Quantum bits or qubits are the quantum equivalent of clas-
sical bits that are fundamental units of a quantum computer.
While a classical bit can store only 1 or 0 at a time, a qubit can
store both 0 and 1 at the same time. To put it in formal terms,
a qubit has a quantum state that can be represented as |ψ⟩ =

[a
b
]
where a2 is the probability of qubit being measured to

0 and b2 is the probability of qubit being measured to 1
(a2 + b2 = 1). A qubit has two special states called basis
states, where one state has pure 0 (a = 1,b = 0 denoted as
|0⟩) and other state has pure 1 (a = 0,b = 1, denoted as |1⟩).

2) QUANTUM GATES
Quantum gates are unitary operations performed on qubits
to change the state of said qubits. These gates can act either
on a single qubit (Hadamard gate, Pauli X/Y/Z, RX/RY/RZ
gates, reset, measurement) or on more than a single qubit
(CNOT gate, SWAP gate, controlled Pauli gates). Reset and
measurement are two special gates, where reset gate in a
literal sense resets the qubit state to |0⟩ and measurement
measures the qubit state classically to either 0 or 1.

3) QUANTUM CIRCUIT PQC
A quantum circuit is an ordered sequence of quantum gate
operations that are performed in time units. All quantum gates
present in a quantum circuit are decomposed to equivalent
native gates. A PQC is a trainable quantum circuit which can
be trained like a normal ML model. The user can initialize
the parameter values and train the PQC using any classical
optimizer.

B. RELATED WORKS
1) BUCKET BRIGADE QRAM [5]
This QRAM (Fig. 2(a)) incorporates bifurcation graph-based
classical RAM structure into quantum domain with the help
of qutrits. A qutrit is a ternary version of a qubit that stores
three states primarily: |left⟩, |right⟩, and |wait⟩ states. The
|left⟩ state denotes binary 0 and |right⟩ state denotes binary
1. Each leaf in the QRAM is a memory cell, where the data
is stored. At the start, all the qutrits are set in |wait⟩ state
and then, from the root node the input states of the address to
be accessed are sent one by one to each qutrit, and the qutrit
state is changed accordingly. Fig. 2(a) shows memory cell at
010 address being accessed.

2) CIRCUIT-BASED QRAM [6]
This QRAM [6] is a quantum circuit that stores integer data
into superposition states (Fig. 2(b)). ForM datapoints each of
sizeN bits,N qubits are used as data lines and log2(M) qubits
are used as address lines. Additionally, a register line is kept to
store angle of the data. The QRAM stores the integer data one
by one, so the circuit depth is high, but circuit width is linear.
For storing each data, there are 3 stages: flip, register and flop
stages. The flip stage has all classically controlled not gates
to set all the bits pertaining to a particular address and data
to 1. This is a compute stage and the flop does the reverse of
this using the same gates, so it is an uncompute stage. In the
middle of both is the register stage, where the angle of the data
is stored using a multi-controlled angle gate. Fig. 2(b) shows
one special such case of QRAM where the address and the
data lines are the same. In a general scenario, the address and

VOLUME 11, 2023 51893

K. Phalak et al.: Trainable PQC-Based QRAM for Quantum Storage

FIGURE 2. Existing QRAM architectures. (a) bucket brigade QRAM, (b) quantum circuit-based QRAM (c) EQGAN QRAM. Reproduced from [5], [6],
and [7].

FIGURE 3. Basic QRAM architecture. Strongly entangling layers are
replicated from [12] which in turn are inspired from [13].

data lines will be separate and work in the same fashion of
flip-register-flop stages to store angle for a particular data in
an address.

3) ENTANGLING QUANTUM GENERATIVE ADVERSARIAL
NETWORK (EQGAN) QRAM [7]
This QRAM prepares quantum state for classical data before
sending them for classification to a QuantumNeural Network
(QNN). The EQGAN is a trainable QGAN circuit which
learns to generate data from two normal distributions. The
EQGAN (Fig. 2(c)) training reaches its optimal point when
ρ(θg) = σ , where θg are generator parameters, θd are dis-
criminator parameters, ρ(θg) is the generated data state, σ is
the original data state. This quantum data from EQGAN is
then sent to quantum classifier.

i) CHALLENGES WITH EXISTING QRAM
Qutrit technology used for bucket brigade QRAM [5] is cur-
rently not easily achievable. The QRAM circuit [6] is simple
to recreate, but the read operation is not well-defined and the

TABLE 1. Comparison of various quantum memories.

stored data can only be integer. The authors employ quantum
forking to use values stored in superposition in QRAM (
[15]). However, the scope of its applicability is constrained.
The authors in [7] preprocess data in quantum and demon-
strate superior results for classification as opposed to without
preprocessing. But unlike a conventional RAM, the EQGAN
does not hold addressable data and only reproduces a syn-
thetic data. Other related works that alter the existing QRAM
and/or explore better implementation are also proposed [15],
[16]. Various QRAMs and their pros/cons and other features
are compared in Table 1.

III. PROPOSED QRAM ARCHITECTURES
A. BASIC ARCHITECTURE
We define basic architecture for our QRAM as a PQC with n
address lines for less than 2n datapoints (Fig. 3) that has an
f : n → n embedding mapping like angle or basis embed-
ding, three circular layers with each layer consisting of one
convolution ansatz (2 RY gates, 1 CNOT gate) and one pool-
ing ansatz (1 controlled RZ gate, 1 X gate and 1 controlled
RX gate) respectively (shown in bubble in Fig. 3) and three
strongly entangling layers [12] followed by ameasurement on

51894 VOLUME 11, 2023

K. Phalak et al.: Trainable PQC-Based QRAM for Quantum Storage

FIGURE 4. Classification using QRAM + QNN setup. (a) Training of QRAM
with auxiliary and main PQCs and (b) training of QNN using trained
QRAM.

each qubit. The reason for choosing this particular ansatz is its
lowest circuit depth and gate count which in turn can provide
better fidelity of computation on real quantum hardware.
The type of measurement can vary depending on the appli-
cation. We use probability measurement of all basis states
for ML task and expectation value measurement for storage
of binary data. The write operation for this basic QRAM
involves training the model whereas read operation involves
loading binary address to the trained model. Although the
proposed PQC-based QRAM does not store quantum data in
superimposed state it does provide addressability to the data
that is stored in quantum format.

B. TRAINING ARCHITECTURE OF QRAM
We use the basic QRAM architecture defined above to design
QRAMs for each application. For the ML task, we use
an auxiliary QRAM which takes digit image and generates
ground truth probabilities for the qubits and the main QRAM
which takes address of the digit image and outputs predicted
probabilities (Fig. 4(a)). Training of QRAM is done in two
steps; in the first step both the auxiliary QRAM and main
QRAM parameters are trained so that the ground truth prob-
abilites and the predicted probabilities are as close to each
other as possible, and in the second step the parameters of
the auxiliary QRAM are fixed and only the main QRAM
parameters are trained to further reduce the loss. Both steps
involve training the QRAM for 100 epochs each. After train-
ing, the auxiliary QRAM is discarded and the output of
the main QRAM for each address is provided to a QNN in
quantum format for classification (Fig. 4(b)). For the binary
data QRAM, a single basic architecture PQC is used which
outputs Pauli-Z expectation value measurement to output
individual data bits on all qubits. For both the scenarios, the
proposed QRAM is approximate since it predicts the output
in each address approximately rather than accurately. For ML

QRAM, the approximation error is difference between the
predicted probabilities and ground truth probabilities for each
image, and for binary data QRAM, the approximation error
arises from the Hamming Distance (HD) between predicted
data bits and actual data bits. Note that the proposed QRAM
architecture can handle only sequential access of data and
does not scale for large datasets for which we can usemultiple
parallel banks of QRAMs.

IV. QRAM FOR MACHINE LEARNING TASKS
A. EXPERIMENTAL SETUP
We perform binary classification on 0 and 1 digits (from
digits dataset by UCI Machine Learning Repository) using
three different setups: (i) proposed QRAM architecture aug-
mented QNN, (ii) QNN with embedding of input images
using amplitude encoding, and (iii) classical Fully Connected
Neural Network (FCNN). Later, we also perform multi-class
classification on all 10 classes and inferencing of binary clas-
sification on real quantum hardware. For the above setups,
we report the training and testing losses and, training and
testing accuracies. We also compare the three cases and inter-
pret the results. For all the setups, we maintain a batch size
of 16 and learning rate of 0.001. We use 360 total images
with 85-15 train-test split. Further details of the three cases
are provided below.

1) QRAM + QNN CLASSIFICATION
While training the QRAM, the digit image is embedded into
the auxiliary QRAM using amplitude embedding, and the
digit address is embedded into the main QRAM using angle
embedding. Both the auxiliary QRAM and main QRAM are
PQCs that use 9 qubits each and output classical probabilities
from all 9 qubits (29 = 512 probability values). The auxiliary
QRAMprobabilities are considered as ground truth, andmain
QRAM probabilities are considered as predictions. Mean
Squared Error of all individual probabilities are calculated,
and then gradients of parameters are calculated with respect
to the calculated loss. The training of the QRAM is performed
in two stages. In the first stage, we make both the auxil-
iary QRAM and main QRAM parameters trainable. In the
second stage, we fix the auxiliary QRAM parameters and
train only the main QRAM (Fig. 4(a)). Both the stages utilize
100 epochs for training. Training auxiliary and main QRAMs
in the first stage prepares the auxiliary QRAM to generate
good ground truth probabilities and in the second stage, the
main QRAM is trained so that the predicted probabilities
are as close to these generated ground truth probabilities.
We refer these two stages of training as the first phase of
classification.

After the QRAM training, a QNN is added after the
QRAM, and the probability outputs are forwarded to the
QNN in quantum format (Fig. 4(b)). The QNN then learns to
classify the class of the image by distinguishing between the
probability output for digit 0 images and probability output
for digit 1 images. We call this stage as second phase of

VOLUME 11, 2023 51895

K. Phalak et al.: Trainable PQC-Based QRAM for Quantum Storage

FIGURE 5. Experimental results for binary classification task for all setups, (a) training and testing losses, (b) training accuracies, and
(c) testing accuracies.

FIGURE 6. (a) Multi-class classification results, (b) QRAM PQC training as QRAM W operation, (c) QRAM access as QRAM R operation.
Thresholding at 0.5 and re-range error correction methods are defined as shown in the figure.

classification which trains for 100 epochs. For best outcome,
we use two separate QRAMs, one only for digit 0, and one
only for digit 1. Using two different QRAMs create more
distinguishable probability outputs that the QNN can easily
classify. The QNN outputs the predicted class, which is then
compared to the actual class using binary cross entropy loss.
The QRAM and QNN PQCs both use the basic QRAM
architecture shown in Fig. 3, with the exception that QNN
does not have embedding since it is already getting data from
QRAM in quantum format.

2) QNN ONLY CLASSIFICATION
We use the same QNN structure used in QRAM + QNN
classification but directly embed images using amplitude
embedding. Similar to the previous case, the QNN outputs the
predicted class of the image and is compared with the actual
class using binary cross entropy loss. The training is done for
100 epochs.

3) FCNN ONLY CLASSIFICATION
In this case, we send the images directly through an FCNN
which gives a single output of the predicted class. Binary
cross entropy loss is calculated between predicted and actual
classes. The FCNN has 3 layers, with 64 (input), 16 (hid-
den) and 1 (output) neurons respectively and is trained for
100 epochs.

B. CLASSIFICATION RESULTS
For each case, the training and testing loss curves (Fig. 5(a))
are nearly identical. This is because the logarithmic factor

in binary cross entropy brings the training and testing loss
values very close to each other. Fig. 5(b) and (c) reports
the training and testing accuracies respectively. We observe
100% classification accuracy for all the three setups. For the
QRAM + QNN setup, we observe QRAM loss reduces from
0.0203 to 0.0028. We note that the QRAM + QNN and QNN
with embedding only setups outperform FCNN in terms of
loss and convergence time. QRAM + QNN converges the
fastest at around 6th epoch, QNN with embedding converges
around 10th epoch, and FCNN converges at around 15th

epoch. The final loss for QRAM + QNN is around 0.53,
for QNN with embedding is 0.48 and for FCNN only is
0.89. From the results, following points could be inferred,
(i) QRAM storage in first phase of classification could pre-
process the write operation, thereby accelerating the second
phase of classification. The first phase relates more to write
of QRAM, whereas second phase more to read operation
and, (ii) the faster convergence of two quantum algorithms
(i.e., QRAM+QNN and QNN with embedding) relative to
FCNN indicates potential quantum computing advantages
with stronger representation powers of QNNs, as extensively
demonstrated in the QNN community.

C. MULTI-CLASS CLASSIFICATION
To further show the robustness of the QRAM-based clas-
sification, we perform multi-class classification of all digit
classes. We allocate one QRAM per digit class (total 10
QRAMs for 10 classes) and individually train them using
the auxiliary and main QRAM architecture. We use around
1800 total images (∼180 images per class) with 85-15

51896 VOLUME 11, 2023

K. Phalak et al.: Trainable PQC-Based QRAM for Quantum Storage

FIGURE 7. Loss value for 100 epochs on ideal simulator followed by
100 epochs on noisy simulator.

FIGURE 8. Training procedure to train binary data QRAM with bit-splitting
method.

train-test split. Next, we send the data from all the QRAMs
to the QNN one by one until they are classified. For the
classification, we use Softmax activation function to generate
the probabilities of all the 10 classes and the cross entropy loss
is calculated for gradient calculation. The results are shown
in Fig. 6 (a). The QRAM loss reduces from 0.0191 to 0.0031,
and we observe convergence at 20th epoch with higher final
loss (≈2.29) and ≈ 98 − 99% training-testing accuracies.

D. INFERENCING RESULTS ON REAL HARDWARE
We perform experimental inferencing of the digits images
using IBM Oslo and Jakarta and compared with Fake Jakarta
backends which is calibrated with real hardware. Since both
the real backends have only 7 qubits, we restricted our dataset
size to 26 = 64 images for classes 0 and 1. This dataset is split
into training and testing in a roughly 80-20 split (53 training,
11 testing). We train the model on default.qubit simulator
by Pennylane (100 epochs noiseless simulation followed by
100 epochs noisy simulation), and perform inferencing with
the testing set on the backends. We also perform inferencing
on Pennylane’s default.qubit and IBM’s QASM simulators
for calibration.

We observe, (a) 100% testing accuracy on both
default.qubit and QASM simulators and (b) roughly around
63% testing accuracy on IBM Oslo, IBM Jakarta hardware
and Fake Jakarta. The reduction in the testing accuracy is due
to the noises present in the quantum hardware and relatively
larger circuit depth of the model converted to the native gate

FIGURE 9. Training procedure to train binary data QRAM with
agglomerative clustering pre-processing.

set of the hardware (≈240 without decomposition, ≈1000
with decomposition). This can be noted from the loss value
in Fig. 7 that shows jump at 100th epoch when simulator is
switched to fake backend while keeping the same model and
training parameters. Note that this accuracy is similar to the
EQGAN classification accuracy of 65% in [7], which was
also performed on real Google Sycamore quantum processor.
One can improve the results by reducing the noise character-
istics of noise model of the quantum hardware by a constant
factor (say, 1

10
th
to 1

100
th
of original hardware noise) and add

modified noise model to simulator. We also note QRAM loss
reduction from 0.0274 to 0.0078.

V. QRAM FOR STORAGE OF BINARY DATA
A. EXPERIMENTAL SETUP
For storage of binary data, we feed address value as input to
the QRAM and obtain approximate classical data value as the
output. The QRAM structure is defined based on the number
of address lines and data lines used. For each setup, we keep
the number of address lines and data lines equal. In order to
embed each address bit into a single qubit, we keep the num-
ber of qubits same as the number of address and data lines. For
an n-address QRAM, the number of address-data pairs will
be 2n, and for each address, the data is chosen randomly in
the range of {0, 1, 2,2n − 1}. Since 2n address-data pairs
are too low to train the QRAM when n is low, we replicate
the entire dataset of 2n datapoints multiple times (called
dataset expansion). For example in a 2-address QRAM, if the
address-data pairs are {00 − 01, 01 − 11, 10 − 00, 11 − 01},
these 4 pairs are repeated continuously {00−01, 01−11, 10−
00, 11 − 01, 00 − 01, 01 − 11, 10 − 00, 11 − 01, . . .} until
the overall dataset size is large enough. Next, we train the
QRAMPQC for 100 epochs and evaluate the average HD and
percentage correct predictions per epoch. For any particular
datapoint if the HD between the predicted data output and

VOLUME 11, 2023 51897

K. Phalak et al.: Trainable PQC-Based QRAM for Quantum Storage

FIGURE 10. Binary QRAM results without clustering, with clustering and with data bit-splitting, (a) Hamming Distance (HD), (b) percentage
correct prediction and (c) final loss curve for different number of address lines.

actual data is zero we assume that the prediction is correct
otherwise we assume that the prediction is incorrect. These
metrics are evaluated for 100 epochs from 2 to 9 address lines.
We also propose two methods to improve the results namely,
(i) a bit-splitting method to split the data bits and allocate to
different PQCs and (ii) clustering the data and sending each
clustered data to different QRAM.

1) BIT-SPLITTING
One way to reduce the average HD and increase the percent-
age correct predictions for a QRAM at higher address lines
is to split the data bits into smaller chunks and allocate one
QRAM per split. Here, we divide the data bits into subset of
2 bits per QRAM and measure the outputs on two qubits. The
individual outputs of the QRAMs are then stitched together
to get the overall data prediction and loss. For example, a
4-address QRAM will be split to two QRAMs such that the
first QRAM will measure the first two bits of data and the
second QRAMwill measure the remaining two bits. We show
the bit-splitting procedure for a general n-address QRAM in
Fig. 8.

2) CLUSTERING
Another method of improving the metric values is to cluster
the similar data i.e., data with less variance. We perform
agglomerative clustering of the data such that intra-cluster
average HD is minimized. Then for each cluster we define
a separate QRAM PQC and train the expanded dataset of
the cluster. We use elbow method [17] to note that k =

n + 1 clusters is the elbow point (i.e., optimal) for n address
lines.We show the process of clustering and storing the binary
data in QRAM in Fig. 9.

B. EXPERIMENTAL RESULTS
We observe a general trend of increase in HD and decrease
in percentage correct predictions with increase in number of
address lines. This is expected because the increase in number
of datapoints makes it difficult for the QRAM to predict
all individual bits of datapoints correctly. For pure QRAM
(without clustering/bit-splitting), we observe an average HD
of 0 and 100% correct predictions only till 2-address QRAM.
The HD then becomes non-zero (Fig. 10 (a)) and increases
from 0.25 to 3.97. The percentage correct predictions reduce
from 75% (3-address QRAM) to 0.58% (9-address QRAM)

(Fig. 10 (b)). The bit-splitting method gives zero HD till
3-address QRAM and becomes non-zero from 4-address
QRAM and varies from 0.25 to 3.55. Percentage correct
predictions in this range vary from 74% to 0.97%. With clus-
tering, we observe perfect predictions till 4-address QRAM.
From 5-address QRAM the HD becomes non-zero (HD =

0.18) and keeps on going up till 9-address QRAM (HD =

2.03). The percentage correct predictions reduces from 87.5%
(5-address QRAM) to 10.1% (9-address QRAM). We also
show the loss plot of final loss values for each QRAM
from 2 to 9 address lines for pure QRAM, QRAM w/ clus-
tering, and QRAM w/ bit-splitting. We observe best results
with clustering i.e., ≈1.95X improvement in HD compared
to pure QRAM while bit-splitting only provides ≈1.11X
improvement.

VI. DISCUSSIONS
A. OVERHEAD OF THE PROPOSED QRAM
For classification, we require 1 QRAM per digit and for
clustering and bit-splitting, we require 1 QRAM per cluster
and per split, respectively. Note that the extra QRAMs do not
require any additional qubit resources since the same qubits
can be reused to create and train the other QRAMs. The
QRAM parameters can be stored classically and loaded into
the qubits as needed for an application. The only overhead of
multiple parallel QRAMs is in terms of training time due to
their individual training.

B. SCALABILITY
The number of QRAMs required scale linearly either with
number of classes or with number of address lines. For ML
applications, one can use one QRAM per class to scale
to larger datasets. For scalable binary storage, one can use
parallel banks of QRAMs each of which will store small
fraction of data and address. For example, 8-bit QRAMcan be
realized using 16 parallel banks of the proposed QRAM (w/
clustering) each of which will store 16 address/data reliably.

C. QRAM IMPROVEMENTS
In this work, the PQC structure of the QRAM is kept fixed,
and also the storage of incremental data is not supported.
A detailed analysis of the impact of the choice of PQC ansatz
and task-incremental learning [18] of the QRAM PQC can be
explored in the future.

51898 VOLUME 11, 2023

K. Phalak et al.: Trainable PQC-Based QRAM for Quantum Storage

VII. CONCLUSION
We presented a PQC-based QRAM for ML task and storage
of binary data. Compared to classification without QRAM,
the proposed QRAM reduced the training time by up to 60%
at iso-accuracy for classification. To circumvent the poor HD
at wider address/data for storage of binary data, we proposed
data bit-splitting and agglomerative clustering-based prepro-
cessing approaches. The proposedQRAMwith clustering can
reliably predict binary data for up to 4-bit address and data
widths.

REFERENCES
[1] M. Schuld, I. Sinayskiy, and F. Petruccione, ‘‘An introduction to quan-

tum machine learning,’’ Contemp. Phys., vol. 56, no. 2, pp. 172–185,
Apr. 2015.

[2] M. Schuld, ‘‘Supervised quantum machine learning models are kernel
methods,’’ 2021, arXiv:2101.11020.

[3] M. Schuld and N. Killoran, ‘‘Quantum machine learning in feature Hilbert
spaces,’’ Phys. Rev. Lett., vol. 122, no. 4, Feb. 2019, Art. no. 040504.

[4] M. Schuld and F. Petruccione, Supervised Learning With Quantum Com-
puters, vol. 17. Cham, Switzerland: Springer, 2018.

[5] V. Giovannetti, S. Lloyd, and L. Maccone, ‘‘Quantum random access
memory,’’ Phys. Rev. Lett., vol. 100, no. 16, Apr. 2008, Art. no. 160501.

[6] D. K. Park, F. Petruccione, and J.-K.-K. Rhee, ‘‘Circuit-based quantum
random access memory for classical data,’’ Sci. Rep., vol. 9, no. 1, pp. 1–8,
Mar. 2019.

[7] M. Y. Niu, A. Zlokapa, M. Broughton, S. Boixo, M. Mohseni, V. Smelyan-
skyi, and H. Neven, ‘‘Entangling quantum generative adversarial net-
works,’’ Phys. Rev. Lett., vol. 128, no. 22, Jun. 2022, Art. no. 220505.

[8] P. Gokhale, J. M. Baker, C. Duckering, N. C. Brown, K. R. Brown, and
F. T. Chong, ‘‘Asymptotic improvements to quantum circuits via qutrits,’’
in Proc. ACM/IEEE 46th Annu. Int. Symp. Comput. Archit. (ISCA),
Jun. 2019, pp. 554–566.

[9] J. M. Baker, C. Duckering, and F. T. Chong, ‘‘Efficient quantum circuit
decompositions via intermediate qudits,’’ in Proc. IEEE 50th Int. Symp.
Multiple-Valued Log. (ISMVL), Nov. 2020, pp. 303–308.

[10] S. Pirandola, B. R. Bardhan, T. Gehring, C. Weedbrook, and S. Lloyd,
‘‘Advances in photonic quantum sensing,’’ Nature Photon., vol. 12, no. 12,
pp. 724–733, Dec. 2018.

[11] B. J. Lawrie, P. D. Lett, A. M. Marino, and R. C. Pooser, ‘‘Quantum
sensing with squeezed light,’’ ACS Photon., vol. 6, no. 6, pp. 1307–1318,
Jun. 2019.

[12] Xanadu. (2022). Qml.Stronglyentanglinglayers, Pennylane Documenta-
tion. [Online]. Available: https://pennylane.readthedocs.io/en/latest/code/
api/pennylane.StronglyEntanglingLayers.html

[13] M. Schuld, A. Bocharov, K. M. Svore, and N. Wiebe, ‘‘Circuit-centric
quantum classifiers,’’ Phys. Rev. A, Gen. Phys., vol. 101, no. 3, Mar. 2020,
Art. no. 032308.

[14] V. Giovannetti, S. Lloyd, and L. Maccone, ‘‘Architectures for a quan-
tum random access memory,’’ Phys. Rev. A, Gen. Phys., vol. 78, no. 5,
Nov. 2008, Art. no. 052310.

[15] D. K. Park, I. Sinayskiy, M. Fingerhuth, F. Petruccione, and J.-K.-K. Rhee,
‘‘Parallel quantum trajectories via forking for sampling without redun-
dancy,’’ New J. Phys., vol. 21, no. 8, Aug. 2019, Art. no. 083024.

[16] C. T. Hann, C.-L. Zou, Y. Zhang, Y. Chu, R. J. Schoelkopf, S. M. Girvin,
and L. Jiang, ‘‘Hardware-efficient quantum random access memory with
hybrid quantum acoustic systems,’’ Phys. Rev. Lett., vol. 123, no. 25,
Dec. 2019, Art. no. 250501.

[17] T. S. Madhulatha, ‘‘An overview on clustering methods,’’ 2012,
arXiv:1205.1117.

[18] G. M. van de Ven and A. S. Tolias, ‘‘Three scenarios for continual learn-
ing,’’ 2019, arXiv:1904.07734.

KOUSTUBH PHALAK (Student Member, IEEE)
received the bachelor’s degree in electrical and
electronics engineering from the Birla Institute of
Technology and Science, Pilani, in 2020. He is cur-
rently pursuing the Ph.D. degree with the Depart-
ment of Computer Science and Engineering, The
Pennsylvania State University. He works in the
field of emerging technologies, especially quan-
tum computing.

JUNDE LI (Student Member, IEEE) received
the B.Mgt. degree in logistics management from
Qingdao University, in 2015, the M.Sc. degree in
engineering management from the City University
of Hong Kong, in 2016, and the Ph.D. degree in
computer science and engineering from The Penn-
sylvania State University (Penn State), in Decem-
ber 2022. Before joining Penn State, he was a
Process Engineer with ASM Pacific Technology
and an Artificial Intelligence Engineer at a local

autonomous driving startup in Hong Kong. He was with ApexQubit as a
part-time Quantum Machine Learning Engineer, in 2021. He was a Deep
Learning Research Intern with the Bosch Center for Artificial Intelligence
(BCAI), in 2022. He is currently a Machine Learning Compiler Engi-
neer with Cadence Design Systems. His current research interests include
machine learning, computer vision, neural network compression and quanti-
zation, and quantum computation and intelligence. He received the Dr. Tse-
Yun Feng Graduate Student Award from Penn State.

SWAROOP GHOSH (Senior Member, IEEE)
received the B.E. degree (Hons.) from IIT, Roor-
kee, and the Ph.D. degree from Purdue University.

He is currently an Associate Professor with The
Pennsylvania State University. His research inter-
ests include quantum computing, emerging mem-
ory technologies, and hardware security.

Dr. Ghosh is a Senior Member of the National
Academy of Inventors (NAI), an Associate Mem-
ber of Sigma Xi, and a Distinguished Speaker of

the Association for Computing Machinery (ACM). He has also served on
the technical program committees for more than 25 ACM/IEEE confer-
ences. He was a recipient of the Intel Technology and Manufacturing Group
Excellence Award, the Intel Divisional Award, the two Intel Departmental
Awards, the USF Outstanding Research Achievement Award, the College of
Engineering Outstanding Research Achievement Award, the DARPA Young
Faculty Award (YFA), the ACM SIGDA Outstanding New Faculty Award,
the YFADirector’s Fellowship, theMonkowskyCareer Development Award,
the Lutron Spira Teaching Excellence Award, the Dean’s Certificate of
Excellence, and the Best Paper Award in American Society of Engineering
Education (ASEE). He served as the General Chair, the Conference Chair,
and the ProgramChair for ISQED andDACPh.D. Forum and the Track (Co)-
Chair for DAC, CICC, ISLPED, GLSVLSI, VLSID, and ISQED. He served
as an Associate Editor for the IEEE TRANSACTIONSONCIRCUITS AND SYSTEMS—
I: REGULAR PAPERS and IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF

INTEGRATED CIRCUITS AND SYSTEMS and as a Senior Editorial Board Member
for IEEE JOURNAL OF EMERGING TOPICS ON CIRCUITS AND SYSTEMS. He served as
the Guest Editor for the IEEE JOURNAL OF EMERGING TOPICS ON CIRCUITS AND

SYSTEMS and IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI)
SYSTEMS.

VOLUME 11, 2023 51899

